
Introduction to Igor Pro, Fall Term - 2024

Carl Grossman, Swarthmore College

Gabe Spalding, Illinois Wesleyan University

There are many data analysis packages available on every computer platform (Windows,
Mac, Unix, etc.). One of the more common ones found in real professional and graduate
research labs is called Igor, made by Wavemetrics. For outstanding control and precision
of the graphics, the earliest versions of Igor employed powerful command-line instructions.
Igor also provided a flexible environment, making it easy to create, and even to automate,
quite complex analysis and visualization procedures. In its current incarnation, Igor Pro,
the software has become ever more user friendly, yet the capability for sophisticated data
analysis and visualization remains. The program can be used for simple tasks like displaying
introductory lab data in a few straightforward steps and yet, at the same time, you can
move on seamlessly as you encounter more and more complex experimental apparatus (see
the Wavemetrics website for screenshots).

1 Simple Data Loading

Open Igor and select from the menu Data, the sub-menu Load Waves, and then from the
drop-down list Load Excel file.... Next, below the Path box, find the File button and press
it to browse to the file of interest (I’ve supplied an example file called SimpleData.xlsx that
you can use here once you’ve downloaded it to your computer). Open SimpleData.xlsx,
but don’t click “Do It” yet: Igor very kindly offers you the opportunity to tweak a few
details in the loading process. In the dialog box now open, under Output Waves, select the
option to take the wave names from worksheet row 1 (which makes sense given the way
data was entered into SimpleData.xlsx, which contains data relevant to a recent court case
for which a lawyer requested an expert opinion on the basic physics involved). In any case,
make sure you’ve checked the checkbox just a bit further down that says, “Make a Table.”
Once you’re happy with the options you’ve selected, click “Do It,” and a table with your
data will appear in Igor.

2 Simple Graph

Go to the Igor menu called Window and select New Graph. Select whatever variables
you wish for the x- and y-axes of the graph (e.g., if you are using the data loaded in the
previous section, select Speed as the measurement to be associated with the y-axis and
Elapsed Time as the independent variable associated with the x-axis), and hit “Do It.”

1

https://www.wavemetrics.com/products/igorpro

3 Modifying the Look of a Graph

Resize the graph, by dragging one corner. Then, double-click on the data trace within
your graph. In the subsequent dialog box, change “Lines between points” to “Markers”
and explore the types of plot symbols you can use for each datapoint (choose a closed circle
for now.) Also click on “Color” and choose a nice purple. Note that you can also change
the size of the plot symbol, if you wish (or type “Auto” if you want to go back to Igor ’s
choice). Click “Do It” to update your graph. Since you will often opt for the formatting
you’ve implemented, next go to Igor ’s Graph menu and select “Capture Graph Prefs.” In
the dialog box, select aspects you would like repeated for subsequent graphs, such as select
“Window Position and Size” and “XY Plots: Wave Styles (lines, markers, colors, ...), and
then click Capture Prefs.”

Igor will remember.

To make other modifications to the graph, double-click on one of the axes. In the dialog
box, find the tab called Axis Label: choose a font and font size. Type a label, such as
“Elapsed Time (sec)” for the bottom axis. To make the label boldface, place your cursor
in front of whatever text you wish to modify and select the “Special” button at left, choose
Style and click Bold and then Okay. Igor gives you plenty of other options: part of what
you type can be in Symbol font or, using the “Special” button at left, you can make part
of what you type a superscript or subscript and then revert to Normal text. It might be
nice to increase the font size. If you’ve done anything that takes time, once you’ve made
choices (of font, size, or style) that you want to apply to the other axis, you can copy the
code that Igor has generated, then click in the upper left to select the other axis, and paste
the code into the label box. Modify that pasted code to yield an appropriate label, such as
“Speed (m/s)” for the left axis. Once you’re happy with changes you’ve made, click “Do
It” to accept them.

The following illustrates just some of your options. Double-click one of the axes. This
time, instead of clicking the tab called Axis Label, try the first one on the left, called Axis.
Uncheck “Axis standoff” and turn on “Mirror axis,” then repeat for the other axis (using
the button at upper left to switch between axes). In Ticks and Grids, select the Location
as Inside, and set the Major Tick Length to 4. Again, do the same for each axis. For the
left axis, select Auto Man Ticks, turn off Auto Ticks in favor of Computed Manual Ticks,
with “Tick Increment” = 5 and, under Minor Ticks, with “Number per major tick” = 1.
For the bottom axis, try “Tick Increment” = 4 and, under Minor Ticks, with “Number
per major tick” = 3. You can choose other numbers if those don’t look good to you. In
Axis Range, select a Manual Range from 0 to 17 for the bottom axis and from 0 to 45 for
the left axis. Once you are happy with your choices, click Do It to retain those changes for
this particular graph.

2

4 Command Line Basics

When you first start Igor, it looks a bit like Excel. Yet Igor is so much better than
Excel. Excel is awkward in many ways (e.g., operations are, by default, on individual cells,
rather than entire data sets), and quite limiting in others, which can become important
as you progress! In fact, there are many reasons to say that Excel is not really a modern
spreadsheet program. The small amount of effort that is required for you to learn Igor
is a very good investment, which will certainly pay off throughout your time at Illinois
Wesleyan (and perhaps well beyond)!

As shown by the screenshot above, Igor ’s default opening reveals an empty Table Window
called “Table0” (as well as a Command Window, which initially carries the self-denying
title, “Untitled”). This Command Window has two parts, a command entry bar at the very
bottom and, importantly, a history box to display previous operations (which turns out to
be both a real time saver later on, as you will see, as well as an archival record of everything
you’ve done in analyzing your data). Once you’ve spent just a little time using Igor, some
of you will find that you would rather type commands than point-and-click a mouse; it
turns out that you do, indeed, have the flexibility to do things either way. Regardless, the
history display records it all, not just typed-in commands; your mouse clicks and dialog
box selections also result in entries. Again, the history display will prove very handy for
reviewing a series of steps in data analysis or for calling up and executing a previously
typed command (you can use the up-arrow and down-arrow keys to navigate through the
history and hit enter to copy any part you wish into the command bar for editing and re-
use). Moreover, when you save an Igor “Experiment” (as it is called), the entire history is
saved along with your data, formatted graphs and tables, procedures, functions, programs,
et cetera. This makes life a great deal easier when you later wish to return to your work.

Igor will remember.

3

If you’ve just worked through the previous sections of this tutorial, the history portion of
the Command Window is already populated. To repeat a command, just highlight it and
hit return twice. (The first time you hit return, that previous command is entered into the
active command line, where you could edit it, if you wish. The second time you hit return,
it runs the command.) Of course, you can also enter new commands into the command
line. In fact, it is easy to do quite a lot, rather directly, with Igor ’s commands, as you
quickly infer if you select Igor ’s Help menu and click on Command Help.

For now, as a first example, you’ll just learn the syntax used to create x and y data arrays;
you will also calculate an arbitrarily complex function, such as y = e−x/10 sin(2πx) for the
range 0 ≤ x ≤ 10, and plot it.

By exploring the command structure used by Igor, you are also learning how to write
programs in Igor, which can allow you to completely automate many data acquisition
and analysis processes. (Given proper connection, Igor can even control external test
and measurement instrumentation, image capture and analysis, automate identification of
features in data, etc.)

Igor is at your command.

4

A first exercise in giving Igor your commands:

The previous figure showed a sequence of commands, along with their results, which we
now review. Open Igor, click on a table to ensure that it is the center of Igor ’s attention,
then click in the command line, and enter those commands, which are repeated below.
(As you do so, watch what happens when you hit “Enter” at the end of each line, and see
whether you can figure out what the “x” corresponds to on the right side of the equation
in the third line below):

make /n=100 xdata, ydata
append xdata, ydata
xdata = x/10
ydata = exp(-xdata/2)*sin(2*pi*xdata)
display ydata vs xdata

In the first line, you made new “waves” (i.e., variables stored in memory. The /n=100 tells
Igor that these waves will contain one hundred data points. The variable names for each
of the waves created (here “xdata” and “ydata”) are separated by commas.

In the space below, please write down what the “x” corresponds to, on the right side of
the equation in the third line above:

The “append” command operates on the “top-most” window, in this case Table0; it adds
elements to the table. If a graph window is selected, the append command adds plots to the
graph. One of the menus that appear at the top of the screen will also change depending
on which window is selected. In other words, tables, graphs, and layouts automatically
have different options available. Try clicking on the Graph and Table windows to see which
menu changes. Select the Graph window and try the append command.

Note that the “ydata = exp ...” in the fourth command line above, calculates the entire
data array in one command, unlike Excel (which typically forces you to specify a range of
cells). With your Graph window visible, go back to the Command Window and try editing
the function you previously entered, perhaps multiplying it by *10 (click on the command
in the history display and hit enter and the command will be automatically typed into
the command entry box - there, you can edit it and hit enter again to execute the new
command). ...Are you staring to like Igor Pro yet?

5

5 Table and Graphing Basics

Again, as an alternative to typing instructions into the Command Window, Igor Pro also
has an intuitive graphical user interface for basic data entry and graphing. The Table
Window can be used either to enter data manually, to simply cut and paste data from
other programs, or to display data that Igor (very capably) can read from a file or create
from a function. Once data is entered, a new graph can be made either by using the
Command Window (as you did above) or just by selecting the menu item Windows→New
Graph. In fact, some people never bother using the Command Window at all: everything
you need for introductory-level work (at least) is available via the menus associated with
the graphical user interface.

The next data set we’ll take a look at was taken during a “Cavendish Experiment” where
the data was collected and entered by hand, then displayed, and later fit to a (non-trivial)
function that describes a damped harmonic oscillator. As data is typed or pasted into
Igor, the default names are given, wave0, wave1, wave2, etc. If preferred, these names can
be changed with the Rename operation; that’s a very useful trick for keeping track of the
physical meaning of each column. (Using the waves created in the previous example, you’d
just type “Rename ydata fred; Rename xdata wilma” in the Command Window: note that
all tables and graph titles immediately update!) In our next example, wave0 is the time in
seconds, wave1 and wave2 are the measured positions of a laser beam on a wall. (In this
particular “Cavendish” experiment, the laser beam was reflected off a mirror attached to
a torsional oscillator and so the laser beam position was related to degree of rotation of
the oscillator. Assigning physically meaningful names won’t matter for now, though, since
we’re just trying to demonstrate how to start using Igor Pro.)

6

Data Plot Exercise:

• Open, in a text editor, “Cavendish.txt” from the tutorial files I’ve supplied for you.
Select and copy the first bunch of data, running from the first entry, 00.00, through
to the entry just before a big gap, 420.00 (In the actual experiment, these were the
times at which the laser beam positions were noted).

• In Igor, start a new experiment. (You needn’t save the previous example.)

• From the Window menu, select New Table and dismiss the resulting dialog box simply
by hitting return (or enter). Then, in the Table0 window, click on the top row of the
first column and paste. The column title should become “wave0”.

• Repeat, copying the next two bunches of data into the next two columns of Igor Pro.
(In the experiment, these were the observed laser beam positions, recorded for two
different configurations of lead balls used in the apparatus.)

• To demonstratemenu-driven graphing, choose the Windows→New Graph menu item.
A box will show up with two lists, a Y Wave list and an X Wave list. For the Y Wave,
choose “wave1” and shift-click on “wave2” to select both data sets for plotting. If
you were to leave “ calculated ” as the X Wave then the x-axis of your graph would
simply use the data point number 0, 1, 2, 3, and so on; however, for this experiment,
we want to see the dependence on time (which is wave0), so go ahead and select
“wave0” for the X-Wave.

• Click on “Do It,” and double-click on the curve to change the plot mode to “Markers.”

6 Curve Fitting Basics

[Background: the Cavendish lab measures a shift in position of a torsion oscillator due to
the (weak) gravitational interaction between 1-kg lead balls integrated into the apparatus.
Although the effect is tiny, the reflected laser beam travels a fair distance to the lab wall,
so even a small angular shift produces measurable deflection of the laser spot. Such an
“optical lever” is often used to turn small displacements into something easily measurable.
In the data at hand, the gravitational interaction between the lead balls produces a change
in position of the laser beam of about 1 cm. In working with a Cavendish balance, our
interest is in measuring the shift in equilibrium positions as we change the distance between
the lead balls. To improve accuracy, what we actually do is to measure displacements
from the “center” position for damped harmonic motion in the torsional oscillator; those
displacements are large compared to the uncertainty of each position measurement. It
is only by using curve fitting on this collection of data that we will extract the desired
precision regarding the center positions.]

7

The figure shows the first pane of the Curve Fitting dialog box that will appear in the
exercise below. Here, you will specify the Y and X arrays and the fitting function.

Curve Fitting Exercise:

• Select the graph window and then choose the Analysis→Curve Fitting menu item.

• The Curve Fitting dialog box opens. Select the leftmost tab near the top of the
dialog box, labeled “Function and Data.”

• Choose “wave1” for Y Data and “wave0” for X Data.

• Browse the available functions and note that, for any you select, the definition of that
function appears in the large equation box. (In general, you’ll write that equation
down in your lab notebook!) For our test data, we will fit to a damped harmonic
oscillator function, which is not on the list of built-in functions (nor would it be for
Excel); such situations are common in science, and require you to define for Igor a
new fit function, customized to the experiment at hand. Click on the button labeled
“New Fit Function.”

8

• Make up a name for this function, set up five adjustable “Fit Coefficients” (by entering
A, B, C, D, E, each in its own box), name an Independent Variable (t), and type in
the following “Fit Expression:” A + B*exp(-C*t)*sin(D*t + E). Finally, click on
the button labeled “Save Fit Function Now.”

• Click on the “Coefficients” tab atop the dialog box. It turns out that, regardless of
the software you use (whether it is Excel, Igor, LabVIEW, or MatLab),“generalized”
curve fitting requires you to make initial guesses for coefficients, so that the algorithms
used won’t be so likely to get “lost” while trying to optimize the fit to your data. This
turns out to be a wonderful exercise that you should engage in frequently: just by
looking at your data plot you can usually make reasonable estimates for each of the
coefficients. The “Graph Now” button allows you to see what your model would look
like with those guesses. In this way, you can play around with the coefficients until
you get in the right “ballpark.” For now, we’ll just supply you with those “adjusted
starting guesses” that we came up with: 52, 30, 0.001, 0.027, 2.1. The next step is
to allow Igor to adjust these values to optimize agreement with the data.

• Before clicking “Do It,” click on the “Output Options” tab. This dialog allows one
to control the whereabouts of the calculated function that best fits the data.

• Choose Destination→ “ NewWave ” and call it something reasonable, such as “wave1Fit.”

• Finally, always double check settings on all of the available tabs and then click “Do
It” (or just hit enter, which has the same effect). After that, hit enter again (or click
“Ok”) to dismiss the Curve Fit Window that pops up.

Parameter values giving the best fit appear in the Command Window, though the fit
function is not automatically displayed (unless you use the auto feature in the “Output
Options”). It is easy to add another trace to a graph: select the Graph→Append Traces
menu item, and choose “wave1Fit” as a YWave and “wave0” for the XWave. Alternatively,
you could have simply used the Command Window, typing “append wave1Fit vs wave0.”
(If you did not previously change the graph mode to “Markers,” you may now wish to
double-click on the data that is plotted, so that you can change the way that different lines
and points are displayed; this helps you to distinguish the data from the fit.)

We won’t pontificate about the care one must take in curve fitting, but the use of some
other software that makes it all too easy for students to develop some really bad habits;
hiding away all of the controls might be part of the problem with those other packages.
Igor Pro gives you a bit more access to what’s going on “under the hood.” Moreover, the
curve fitting package in Igor Pro really is professional and robust. It won’t take long at all
to demonstrate, and then, very quickly, you’ll be doing great things! – For now, though,
simply save the experiment with your name in the title and close it.

9

7 Layout Basics

Layouts are used to adjust the size and placement of plots (and tables) so that they fit
nicely into lab notebooks or, more generally, just to make neat and informative printouts.
Too many times students have turned in curve fit data with no information about what
fitting function was used! Such “annotations” should be entered directly onto the Layout
(instead of adding them directly onto the original graph): with this approach, you will
have flexibility in re-sizing and repositioning each element, independently. I recommend
using Layout annotations not just for showing the fitting function equation but also for
the results of the curve fit (both the optimized values of fit coefficients and the uncertainty
in each of those coefficients). So, if any of those annotations are currently in your graph
window, double-click on them, then delete it from the original graph. You can use Igor ’s
history to paste that information into a Layout, as shown in the next exercise.

Layout Exercise: Open the file that was saved in the last exercise (double-click on the
file or choose the File→Open menu item). Notice that all of the commands that you had
previously executed are automatically done over. The history of commands regenerates the
graphs, curve-fits, and modifications. Igor keeps great records of everything you’ve done!

• Choose the Window→New Layout menu item.

• Select “Graph0” and click “Do it” to open the Layout0 window.

10

• Re-size and position your graph so that it only takes up as much of a standard page
as seems appropriate.

• Copy, from the history window, the results of your curve fit, beginning with the line
that reads “Coefficient values ± one standard deviation” and including the optimized
values of fit coefficients and the uncertainty in each of those coefficients.

• Now return to the Layout window and notice the toolbar on the left side of the
window. To add text to the layout, click on the A... button and click somewhere in
the layout area.

• A dialog box opens with many options. Here you should now paste the text that you
copied from the history window, showing the results of the curve fit, and should top
this off with the explicit equation for the fitting function that you used:

y = A + B*exp(-C*t)*sin(D*t + E).

• Before you hit “Do It,” note that there are lots of bells and whistles available in
this dialog box: font (including the Symbol font), subscript and superscript, size and
position control are all pretty useful.

• After hitting “Do It,” be sure to un-select the A... button by clicking on the arrow
button, otherwise you keep making text boxes. Once you’ve selected the arrow but-
ton, you can independently re-size or position the graph and the annotation(s) you’ve
made. Save your work, and any Layouts you’ve created are also saved!

8 Data Import Basics

More than with any other software I’ve tried, it’s been relatively easy using Igor Pro to
import data that is embedded in text and headers. Igor is also especially useful if you
have many data files with the same structure (for example, files where the x -y data values
always start on line 17 of each data file). Once you figure out how Igor can read a file,
the process can be automated in a script to read a whole folder full of files! While the
previous sections of this tutorial should be completed by all students in their first semester
of physics, the remaining sections are great for anyone wanting some extra power. Over
your college career (and beyond), you are likely to gather data from all sorts of commercial
instruments. It doesn’t take long to realize that there are some pretty crazy data formats
out there. To get started, the following exercises use two different methods to extract data
from a file that has lots of text surrounding the numbers we want, and four different types
of data blocks.

11

• The first method uses a dialog box to identify the data from within the file.

• The second method again starts with a dialog box to perform the same operation,
but goes on to save it as a command. This command can be copied into a script,
called a macro, to open any file of the same format and similar file name.

Here we have some test data that looks at correlations of a particular sort. The data file
shown above starts with some header information, followed by a block of 3-column data,
then a few lines of text, a block of 8-column data, text, a block of 3-column data, text, and
finally two more columns of data. (A printout of these raw data files would span eighty
pages!) Buried within all this, the correlation data that we want to extract for this exercise
is contained within the first block, and the main point is that Igor allows you to excise
that information with surgical accuracy. Within this block of interest, the first column is a
delay time, the second column is the correlation function between detector 1 and detector
2, and the next column is vise versa (i.e., the correlation you find if you start with detector
2 and compare to detector 1 after the given delay time). ...Did we mention that you’re
(soon!) likely to encounter some crazy data formats?

12

Data Import Exercise: Method I

• Under the “File” menu, open a New Experiment.

• Choose the Data→Load Waves→Load General Text menu item.

• Select the data file “alexa 10s 1.SIN” from the tutorial files I’ve supplied. Select
“Enable All Files.” (.SIN is not a format that Igor natively recognizes.)

• Notice that even though this isn’t an Igor file, Igor is smart enough to immediately
skip the non-numerical text, and recognizes that there are three columns in the first
block of data.

• These are the data that we want, but don’t load them for the moment. See what
happens when you click on the “Skip this block” button.

• Since that quick illustration caused us to missed the data that I’d like for us to focus
on, go ahead and cancel the import and start again, this time actually click to Load
the first set of data (three columns of two-detector correlation data).

• Now you’re ready to quit the import, as we don’t want to load the other data blocks.

• Notice that in the history there is information recorded about which line the data
was found on: “LoadWave is unable to find column names on line 15,” means that
the data starts on line 16. Also, the history notes that there are 608 lines of data in
the first block, as you should now check by listing the data in Table0. (Either use the
“append” command or the Table menu.) Keep this experiment open as we continue.

13

Data Import Exercise: Method II

• Choose the Data→Load Waves→Load Waves menu item (yes, these menu items have
the same name!)

• Choose General Text using the pull-down menu near the top of the Load Waves
dialog box.

• The Double Precision checkbox should be checked.

• Click on File... button and once again select the data file “Alexa 10s 1.SIN” from
the sample files I’ve supplied.

• This time click on “To Cmd Line.” The import operation is not executed yet. The
command line equivalent is entered into the command line. We can edit it and then
execute the command by hitting return. But first let’s make some changes.

• Look at what’s now in the command line. To see what all of the slash-letter specifica-
tions (command flags) do, go to the Help→Igor Help Browser menu item and click on
the “Command Help” tab near the top of the dialog box. You’ll see an alphabetical
list of commands on the left, scroll (or begin typing into the list) to move down to
the “LoadWave” command.

14

• In some older versions, Igor would automatically add information about what lines
the first data block begins and ends on, but the result would sometimes be off by
one line, as shown in the figure above. In the command line, you want to edit the
command immediately (i.e., leaving no space) after the /D to read /L={0,16,608,0,3}
and this should be followed by a space before the string (path) telling Igor where to
find the file of interest.

• Copy and paste that path information to a safe place, so that you can use
it in the next exercise!!

• If you were to execute the LoadWave command, Igor would open a dialog box asking
for names for the waves. We don’t want this if we are going to automate the process.
So, instead, add the “/A” flag to the “LoadWave” command. (It shouldn’t matter
which order the flags are put into the command.)

• Hit return to execute the command. The history should show that data was loaded
into wave3, wave4, and wave5.

• You can now display the correlation data in a graph of wave1 or wave 2 vs wave0.
It doesn’t look like much unless you change the plot to a semi-log plot. To do that,
simply choose the Graph→Modify Axis menu item, select “bottom” from the pull
down menu, and change the mode of this axis to “log.”

• Again, the point is that even though this data was generated from instrumentation
that had nothing to do with Igor Pro and was embedded inside a fairly complicated
mix of text and header structures, it was still relatively straightforward for Igor to
import the data. (Moreover, you’ll soon see how to automate such processes!)

9 Creating Macros and Functions

Igor uses the Procedure Window for the development of macros as well as functions and
full-fledged programs. Under Igor ’s Window menu, select New, then Procedure. This
window can also be opened from the Windows→Procedures→Procedure menu item (or
cmd-M on the Mac). Whenever you write code, we strongly urge you to drag out the
window to fill a large space, and click on the zoom icon at the bottom left, to enlarge the
type by a factor of two (at least). This will make it easier for you to find your mistakes!

Type in a name for your procedure, preferably one that gives some hint as to its purpose,
though for this preliminary example just type MyProcedure. In the subsequent window
that opens, add a line beginning with either the word macro or the word function, followed
by the name you wish to give to your macro or function. Let’s suppose we would like the
macro to print “Hello, World!” The full macro would read as follows:

15

macro MyMacro()
print “Hello, World!”

end
To compile this (terribly basic) procedure, either click Compile (at the bottom of the
Procedure Window) or click in any other window. To actually run the procedure, click on
the command line and there type MyMacro() and hit return.

As a slightly more interesting example, suppose we wish to write a function of two variables.
Below, we begin a new procedure with a line that starts with the word function, but now
we also need to give names to the arguments of the function, separated by a comma and
enclosed in parentheses following the function name:

function MyProgram(xwave, ywave)
// initialize variables:
wave xwave, ywave
variable npts=numpnts(xwave)
make /o/n=(npts - 1) deriv xwave, deriv ywave

To declare those arguments, we simply wrote the word wave and then the names of the
arguments, separated by a comma. To declare simple variables, we wrote the word variable
and then the variable names. To make new waves, we wrote the word “make.” Details are
available under Help → Command Help.

For flow control within our procedure, we will add a FOR loop with the syntax shown
below, which will cause Igor to cycle through the following lines repeatedly, each time
incrementing the index i by one. Our goal is to approximate the derivative by the average
slope (the rise over run), and in anticipation of graphing the derivative, we associate each
slope we calculate with the average x-value of the interval used. Note that square brackets
are used to denote elements in a wave:

variable i
for(i=0; i<(npts-1); i+=1)

deriv ywave[i] = (ywave[i+1] - ywave[i])/(xwave[i+1] - xwave[i])
deriv xwave[i] = (xwave[i+1] + xwave[i])/2

endfor
end

Again, to compile a procedure, either click Compile (at the bottom of the Procedure Win-
dow) or click in any other window. To actually run the procedure, click on the command
line and type the name of the procedure, here MyProgram(). However, before you hit
return you’ll need to enter, as arguments of this function, wave names that already contain
data; e.g., if you have loaded my Excel file SimpleData.xls, then you would type MyPro-
gram(ElapsedTime, Speed). After you do hit return, the waves your program has created
are stored in memory, but you can append them to any table or graph you have begun, or
can create a new graph or table to display them.

16

9.1 Intermediate Exercise A: a macro to read in and display data

Suppose we wish to automate the procedure of opening a data file, extracting numerical
data, assigning each array a specific name, and finally plotting everything, in a way that
we like (including labeling of the axes). To input (or output) files, we need to learn how
to work with “strings” of letters of the sort found in filenames and the “pathname” that
tells your computer where to find a file on the hard disk.

The filenames for the data sets that we imported earlier in this tutorial had a base name
(“alexa 10s ”) followed by an integer running from 1 to the last file of the run (I’ve only
given you 10 files, though 30 or 40 is typical), and then an extension indicating the file
format (.SIN). If we are to load all of the data sets you have, it would be hard to keep
track of the various types of information stored were we to rely upon the default wave-
naming scheme (“wave0, wave1, ...”). A better scheme is to use array names that remind
us of which file the data came from, so “AC1 0”, “AC1 1”, and “AC1 2” for the first set,
“AC2 0”, “AC2 1”, and “AC2 2” for the second, and so on. This will be one of the tasks
of our macro.

As you’ve seen in our previous examples, a macro definition starts with something like:
Macro mName(parameter list)

and ends with “End.” In between that beginning and the end, you can enter as many
variable definitions and commands as you need. Where I’ve written “mName,” you really
ought to choose a more specific name that makes sense, for example, LoadDisplay is the

17

name we chose for this exercise. Where we’ve written “parameter list,” there can be as
many as 10 parameters in the list, though here we’ll have just one, which we’ve called
“name,” an identifier for the file of interest. (As with the name of our macro, you can
call your parameters whatever you want as long as what you use doesn’t have some other
meaning in Igor.)

The next line(s) in the macro must define the parameter data type(s). In our case, we’ll be
passing part of a filename, so it will be a string variable. In the Procedure Window shown
above, I’ve typed onto one line, “String name,” to specify that the parameter I’ve called
name will be of the data type string. You can see that I’ve also defined the data types for
any other local variables to be used in our macro. (These will be used to compose each
distinct filename to be loaded and the array names to be stored in Igor. Pro.)

You should now do the same, to create the same macro shown in the previous screenshot:

• In your own Procedure Window, following the lines that name our macro and define
the data type for our parameter, name, now define the string variables “fName” (for
the data file name), along with “wName” (for the base name of array names), and
“wName0” and “wName1.” In Igor Pro’s macros, every single variable to be used
must be declared.

• Now we’re ready to start entering commands, starting with some string manipulation,
which is really easy in Igor : strings can be concatenated with a “+” sign. For
example, the code

fName = “alexa 10s ” + name + “.SIN”

will result in assigning to fName the string “alexa 10s 1.SIN” when “name” is the
string “1”, “alexa 10s 2.SIN” when “name” is the string “2” and so on. When we
use this macro, setting the input parameter to the string “n” will call up nth data
file.

• We do need to tell Igor where on the hard disk to find the file (this is called the path).
Wherever you’ve stored these datafiles on your computer, the path will undoubtedly,
be different than what’s shown in the figure above, which is why we told you to copy
that down during the previous exercise. You can always ask for help if you have
trouble figuring this part out.

• Once the string names, with path, are constructed, use the command that we formed
in the last exercise:

LoadWave/G/D/L={0,16,608,0,3}/A=$wName/O fName

18

Notice the “$” character before the wName string. This forces a conversion from
a string to a name of a data array. The filename parameter should be a string, so
we don’t need to convert fName to a string, it is already a string. Details on the
particular syntax used here are available under Help → Command Help.

• Next, we add commands so that once the data is imported, Igor will plot and set the
horizontal axis to a log scale, adjust the plot symbol color, and label the axes.

• Finally, to use the macro, you can simply select it from under the Macro menu! – This
is a nice alternative to the approach we used in previous macro and function examples.
Of course, it would also work to type into the command window LoadDisplay(“1”),
and hit enter, or to try LoadDisplay(“2”), etc.

Truly, Igor is now at your command!

9.2 Functions

The difference between a macro and a function is simply that, as the name implies, functions
return a value (which may be an entire wave).

9.3 Background Information

The following example generates two functions relevant to the birefringent crystals that we
use to generate entangled photons for a series of instructional labs in quantum mechanics,
for which step-by-step instructions are provided in the Chapter 1 of the senior undergrad-
uate honors thesis of IWU Physics major Andy Ding. Since such quantum information is
becoming such an important part of the undergraduate curriculum in physics, we begin
with a few words about how light interacts with the particular birefringent crystals that we
employ. To understand their use, we first recall that a light wave consists of an oscillatory
electric field. (There’s also a magnetic field component, but that is smaller by a factor of
c, which is a very big factor indeed and, in any case, most optical glasses are non-magnetic
and so we usually don’t need to concern ourselves too much with the magnetic response
of optical components.) When we apply an electric field, E, to a polarizable material, we

19

http://titan.iwu.edu/~gspaldin/PhotonMomentum.html
https://digitalcommons.iwu.edu/physics_honproj/18/

get a (very slight!!) sloshing of the charges inside the material, which we refer to as the
“polarization” of the material. In general, that polarization can be described by a quantity
P, whose dependence upon the electric field may be written in terms of a series expansion:

P = ϵ0(χE + χ2E
2 + χ3E

3 + · · ·)

In other words, the bigger the electric field, the bigger the sloshing of charge within a
polarizable material. This response is dominated by the first-order term, which is to say
that χ (called the linear susceptibility) is much bigger than χ2 or χ3, and for most materials
- even when exposed to the intense fields found in laser light - those extra terms are really
negligible, ...but for the BBO crystals we use, they are at least big enough to lead to some
measurable effects.

The simplest lightwaves we can write down have electric fields of the form E = E0sin(ωt),
which yields:

P = ϵ0(χE0sin(ωt) + χ2E
2
0sin

2(ωt) + χ3E
3
0sin

3(ωt) + · · ·)

Use of simple trig identities allows this to be re-written as:

P = ϵ0(χE0sin(ωt) + χ2E
2
0

1

2
[1− cos(2ωt)] + χ3E

3
0

1

4
[3sin(ωt)− sin(3ωt)] + · · ·)

Note that the “linear” response has the same frequency as the incident field, much in the
same way that an oscillator that obeys Hooke’s Law responds, in steady state, only at
the frequency of the drive. However, any non-negligible nonlinearities will result in second
harmonic and third harmonic frequencies.

This sort of “nonlinear optics” is key to how we create many of the laser wavelengths of
scientific or technical interest, and so is at the heart of many opportunities, but is also
key to all of the single-photon quantum experiments are currently incorporated into the
undergraduate instructional labs at many institutions (addressing, e.g., how we produce
the entangled photons used for teleportation, quantum computing, disproving local realism,
etc.) Each of these experiments makes use of a nonlinear effect in which a photon incident
on a non-linear optical crystal (BBO) stimulates the emission of two new photons, whose
frequencies add up to the frequency of the incident photon, as is shown schematically below:

20

A single 0.405-µm photon can be absorbed and re-emitted as a pair of quantum mechan-
ically entangled photons, each with wavelength 0.810 µm. However, this effect will only
happen a very tiny fraction of the time at the light intensities in our experiments. Roughly
one in 1011 photons gets “downconverted,” due to a very small nonlinear optical suscepti-
bility (i.e., the χ2 coefficient in the formula describing the polarization of our BBO crystal;
here χ3 is negligible). Moreover, the effect is highly dependent upon lining up the BBO
crystal “just so.” The point of this Igor Prop exercise is to generate a plot that will tell us
just how to hit the BBO crystals with a 0.405-µm pump laser so that the transmitted light
might, rarely, consist of as many photons as possible with longer wavelength, 0.810 µm
(i.e., we need to calculate the angle-tuned condition for Type I collinear phase matching
of parametric downconversion.)

Birefringent crystals are characterized by anisotropy: electrons can more easily slosh along
some directions and less easily along others. For BBO crystals, there is a significant
difference in how easily the electrons can slosh in the x- or y- directions (yielding what we
term the ordinary index of refraction) versus how easily they can slosh along the z-direction
(yielding what we call the extraordinary index of refraction). Suffice it to say that our BBO
crystal is cut along a particular direction chosen to serve our purposes. Our first function
will calculate the ordinary refractive index for BBO crystals as a function of wavelength
(in microns) and our second function will calculate the extraordinary refractive index of
BBO as a function of wavelength and polar angle to the optic axis (the direction of laser
propagation).

9.4 Intermediate Exercise B: Defining a Function

Open the file BBOPhaseMatch.pxp and you will find the function definitions shown below
in the Procedure Window. (Again, when working with code, it is a good idea to expand
the window and to zoom in by a factor of two).

21

In general, once you’ve typed a function definition into the Procedure Window, Igor will
compile that function as soon as you click in another window. (If there is some syntax
error, you will get an alert.) Once compiled, the function can then be called from the
Command Window and also from within other function definitions.

22

Produce the graph shown by entering the following commands into the Command Window:

• make/n=1000 theta, n, nor

• theta= x/1000

• n = nExtraordinary(0.405,theta)

• display n vs theta

• nor = nOrdinary(0.810)

• append nor vs theta

• Label left “Index of Refraction”;DelayUpdate

• Label bottom “Angle (rad)”

• TextBox/C/N=text0/F=0/A=MC “n-ordinary”

• TextBox/C/N=text1/F=0/A=MC “n-extraordinary”

23

	Simple Data Loading
	Simple Graph
	Modifying the Look of a Graph
	Command Line Basics
	Table and Graphing Basics
	Curve Fitting Basics
	Layout Basics
	Data Import Basics
	Creating Macros and Functions
	Intermediate Exercise A: a macro to read in and display data
	Functions
	Background Information
	Intermediate Exercise B: Defining a Function

