HW \#5: Reciprocal Lattice

1. - The most important meal of the day: "Special K"

For a two-dimensional Bravais lattice of the sort introduced in Hofmann Chapter 1, the position of any element in the lattice can be described using a linear combination of two basis vectors:

$$
\mathbf{R}=m \mathbf{a}_{\mathbf{1}}+n \mathbf{a}_{\mathbf{2}}
$$

That allows us to describe a crystal lattice in "position space," but your reading (and our class on Wednesday) also suggest we consider a "reciprocal lattice," which for a two-dimensional Bravais lattice will also be two-dimensional:

$$
\mathbf{G}=m^{\prime} \mathbf{b}_{\mathbf{1}}+n^{\prime} \mathbf{b}_{\mathbf{2}}
$$

Often, the most practical way to construct the reciprocal lattice is to use the relation:

$$
\mathbf{a}_{\mathbf{i}} \cdot \mathbf{b}_{\mathbf{j}}=2 \pi \delta_{i j}
$$

Now, here's your problem: find the reciprocal lattice for the three cases given below:
Square
Rectangular
Hexagonal

$|\mathbf{a}|_{1}=|\mathbf{a}|_{2}$
$\gamma=90^{\circ}$

$|a|_{1} \neq|a|_{2}$
$\gamma=90^{\circ}$

$|a|_{1}=|a|_{2}$
$\gamma=60^{\circ}$

2. - Miller Indices:

Hofmann Chapter 1 states that the reciprocal lattice vector $m \mathbf{b}_{\mathbf{1}}+n \mathbf{b}_{\mathbf{2}}+o \mathbf{b}_{\mathbf{3}}$ is perpendicular to the lattice plane given by the Miller indices (m, n, o).

Verify that this is correct for the lattice planes drawn below:

