
Butikov HW Set #3 Exercises 2.1 and 2.4 from Chapter 1 

(Moving on to) Case 2: DAMPED Free Oscillations: 

2.1 – The Sequence of Maximal Deflections: 
Hint: note that this question (along with all the rest in this homework set) considers the case 
where damping is linearly proportional to the angular velocity. On the top right of the main 
simulation panel, be sure that you do now (finally) use the checkmark for “Viscous friction.” 

Re-read the first part of Sect. 1.3 from Butikov Chapter 1 (just a couple of paragraphs, ending 
with the sentence that reads “That is, the ratio of successive terms in this infinite geometry 
progression is less than unity by the small value …”) — As described there, under the action of 
weak viscous friction, the sequence of maximal deflections of a free, damped linear oscillator 
forms a decreasing geometric progression: each consecutive maximal deflection is smaller than 
the preceding one by the same factor, . Here, we’ve used a Taylor 
Expansion, which is why what follows is true only in the limit of weak viscous friction.  

Recall that  is the “natural period” that would be found in the limit of no damping. 
Butikov, on page 4, shows that for the case of relatively weak damping, the fractional 
difference between the observed frequency of oscillation and the ideal frequency expected in the 
limit of damping, is proportional to the square of the small parameter . In other words, there 
really isn’t much change in the period from what you’d calculate using the ideal model with no 
damping. 

In many engineering applications, the strength of the damping is commonly characterized by a 
dimensionless parameter called the quality factor, which is defined by: 

  

We might loosely describe Q as the (rate of return)/(rate of loss). 

(a) Calculate (showing your steps, and using enough words to make your steps clear) a predicted 
value of the quality factor Q at which the amplitude halves during every two complete 
oscillations.  

(b) Use your value calculated in part (a) as input into in your computer experiment, and verify 
the theoretically predicted constant ratio of successive maximal deflections. Confirm that this 
ratio does not depend on the initial conditions (though picking even numbers for the initial 
amplitude may make it easier to see, more closely, whether the amplitude has indeed been halved 
after two cycles, as it would then coincide with a tick mark on the graphs supplied). Remember, 
Butikov call this is a “virtual lab." That’s why all of your Butikov homework has been going into 
your lab notebook! — Here, you need to use all of the normal habits expected or a lab notebook 
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including, of course, showing whatever you observe in an experimental test (including screen 
clippings), writing down a guide for the reader, and writing down your thoughts about it!  

(c) This part of the question is not about the decay in amplitude, but about the shift in period as 
damping is added. See p. 4 of Butikov Ch 1, Eqn. 4: the period is predicted to change as damping 
is added, and you certainly can no longer say that damping is negligible if the amplitude halves 
every two cycles: For the value of the quality factor at which the amplitude halves during every 
two complete oscillations, evaluate the increment (in percent) of the predicted period of 
oscillations, including damping, with respect to the “natural period,” . (Recall that  is the 
period that would be predicted from the ideal model with no damping.) Can you detect the 
increment in the simulation experiment? The marks on the time axis correspond to integer 
numbers of “natural periods,”  (which, again, is what you’d predict without damping). 

2.4 – The Phase Trajectory of Damped Oscillations:  

 corresponds to a system that is “critically damped.”  

For , the system is “overdamped” and oscillations do not occur.  

For Q > 0.5, the system is “underdamped,” and the phase trajectory of the oscillations that are 
associated with free decay will be a spiral that makes an infinite number of gradually shrinking 
loops around the focus, located at the origin of the phase plane. This focus corresponds to the 
state of rest in the equilibrium position, and the phase trajectory approaches it asymptotically.  

(a) In the underdamped limit, how, specifically, does the radius of these loops change while the 
curve approaches the focus? Can you provide an equation that applies as we vary Q throughout 
the underdamped regime? 

(b) Does the time interval during which the representative point makes one revolution of the 
spiral change as the loops of the curve shrink?  
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