
Appendix A: Programming the Teensy Microcontroller

The Teensy microcontroller connects to a computer via a micro-USB cable. Your instructor has already
installed the Arduino software it utilizes:

https://www.arduino.cc/en/Main/Software

Your instructor has also installed the Teensyduino software (with all libraries installed – we will make
particular use of the FreqCount library):

https://www.pjrc.com/teensy/td_download.html

Connect the microcontroller and open the Arduino.exe program. The following settings need to be
selected in the Tools menu for this to function properly:

To program the Teensy, open Henry’s version of the code you’ll need (or, alternatively, copy and paste the
code shown on the next page) and click the Upload button as shown above. Open the Serial Monitor to
communicate with the Teensy over the serial interface.

https://www.arduino.cc/en/Main/Software
https://www.pjrc.com/teensy/td_download.html
https://sun.iwu.edu/~gspaldin/SPADCounter02.ino

//-------------------------SPADCounter02.ino-------------------------

#include <FreqCount.h>//frequency counting library

#include <Bounce.h>//debouncing library

const int sensePin = 13;//pin for detection events

const int intervalPin = 1;//pin that sets the system into interval counting mode

const int freqPin = 12;//pin that sets the system into frequency counting mode

const int intervalLED = 23;//status indicator for interval mode

const int freqLED = 14;//status indicator for frequency mode

byte oldState;

volatile unsigned int bangTime = 0;//variable created to store the number of
microseconds between detection events

volatile int dataSent;//logical value of whether or not the NEW time interval data has
been sent. 1 true,0 false

const unsigned long senseLength = 1000;//time DURATION to collect interval data
(specified in milliseconds)

Bounce intervalButton = Bounce(intervalPin, 25);//bounce is a library used to
debounce. Bounce is the appearance of spikes of electric signal during

//logic signal switching, such as mechanical effects. Bounce(uint8_t pin, unsigned
long interval_millis) creates an instance of the

//Bounce class, attaches pin and sets interval to interval_millis. The effect is to
remove bounce of the pin with the chosen parameter. See github bounce libraray

//for more info

Bounce freqButton = Bounce(freqPin, 25);//freqButton is a bounce instance, and the
instance is attached to pin 12 (freqPin=12) with interval 25.

//Bounce is used for mode switching pins because they are attached to mechanical
buttons which need debounce to be stable.

void setup() {

 pinMode(1, INPUT_PULLUP);//set mode of pin to resistive pullup input with internal
pullup resistor. Default electrical value would be HIGH, and becomes LOW when

 //a grounded button is pressed. Search pullup resistor for more information.

 pinMode(12, INPUT_PULLUP);

 pinMode(intervalLED, OUTPUT);

 pinMode(freqLED, OUTPUT);

 digitalWrite(intervalLED, LOW);

 digitalWrite(freqLED, LOW);

 Serial.begin(115200);//set baud rate of serial communication

}

int countMode = 0; //mode = 0: nothing happens; mode = 1: frequency counter
operational; mode = 2: Interval Timer

elapsedMillis elapsedTime;

elapsedMicros senseTest;//a variable that increases as time goes to store the time
elapsed between events

void loop() {

//pins assigned to a bounce instance can be called (read change in value, read value,
detecting edge, etc.) with bounce methods.

//update, fallingEdge are some bounce methods. See bounce github for more info

 if (freqButton.update()) {

 //if the frequency mode button updates

 if (freqButton.fallingEdge() && countMode == 0) {

//only triggers the code to start the frequency counter when the button is pressed,
which corresponds to LOW electric signal. Remember the pin is in resistive pullup
mode.

//fallingEdge is used so that risingEdge does not trigger the code again to avoid
double triggering.

//This starts frequency counter when the button is pressed and when we are in nothing
mode.

 FreqCount.begin(1000);//FreqCount is a library for counting the number of events
over an INTEGRATION TIME (specified in milliseconds; default setting = 1000)

 elapsedTime = 0;

 Keyboard.print("time [ms]");

 Keyboard.set_key1(KEY_TAB);

 Keyboard.send_now();

 Keyboard.set_key1(0);

 Keyboard.send_now();

 Keyboard.println("Frequency [Hz]");

 digitalWrite(freqLED, HIGH);//indicate frequency counting is in progress

 countMode = 1;//show that we are in frequency counting mode.

 }

 else if (freqButton.fallingEdge() && countMode == 1) {

 //if we are already in frequency counting mode and the button is pressed, stop
the counter.

 FreqCount.end();

 digitalWrite(freqLED, LOW);//indicate frequency counting mode is over

 countMode = 0;//show that we are back to nothing mode

 Keyboard.set_modifier(MODIFIERKEY_CTRL);

 Keyboard.set_key1(KEY_HOME);

 Keyboard.send_now();

 Keyboard.set_modifier(0);

 Keyboard.set_key1(0);

 Keyboard.send_now();

 }

 }

 if (intervalButton.update()) {

 if (intervalButton.fallingEdge() && countMode == 0) {

 digitalWrite(intervalLED, HIGH);

 countMode = 2;

 Keyboard.print("integration time [ms]: ");

 Keyboard.println(senseLength);

 Keyboard.println("interval time [us]");

 dataSent = 1;

 elapsedTime = 0;

 senseTest = 0;

 attachInterrupt(digitalPinToInterrupt(sensePin), isr, RISING);//enable sensePin
interrupt. Whenever sensePin receives a rising edge electric signal,

 //the interrupt is triggers and executes the interrupt code. The interrupt
function is called isr.

 }

 }

 if (countMode == 1 && FreqCount.available()) {

 unsigned long freq = FreqCount.read();

 Keyboard.print(elapsedTime);

 Keyboard.set_key1(KEY_TAB);

 Keyboard.send_now();

 Keyboard.set_key1(0);

 Keyboard.send_now();

 Keyboard.println(freq);

 Serial.println(freq);

 }

 if (countMode == 2 && dataSent == 0) {

 //if in interval counting mode and new time interval data has been obtained but
not yet sent (dataSent=0)

 Keyboard.println(bangTime);

 dataSent = 1;//new data is sent, so the logic becomes true

 }

 if (countMode == 2 && elapsedTime > senseLength) {

 //if in interval mode and time elapsed exceeds the time intended for data
collection

 detachInterrupt(digitalPinToInterrupt(sensePin));//disable interrupt of sensePin

 digitalWrite(intervalLED, LOW);//indicate that interval counting mode stopped

 countMode = 0;//shows that we are in nothing mode

 }

}

void isr() {

 //when sensePin receives a rising edge electric pulse, the code is executed.

 bangTime = senseTest;//set time taken for a pulse to be detected as senseTest, which
is the time elapsed

 senseTest = 0;//clear the time elapsed between detection events

 dataSent = 0;//since new data of time interval is acquired, we change the logic of
dataSent to false 0 so that the code will send this data.

}

