- 16.14 (a) According to the Arrhenius definition, a base when dissolved in water increases [OH⁻]. According to the Brønsted-Lowry theory, a base is an H⁺ acceptor regardless of physical state. A Brønsted-Lowry base is not limited to aqueous solution and need not contain OH⁻ or produce it in aqueous solution.
 - (b) NH₃(g) + H₂O(l) = NH₄⁺(aq) + OH⁻(aq) When NH₃ dissolves in water, it accepts H⁺ from H₂O (B-L definition). In doing so, OH⁻ is produced (Arrhenius definition).

Note that the $\mathrm{OH^-}$ produced was originally part of the $\mathrm{H_2O}$ molecule, not part of the $\mathrm{NH_3}$ molecule.

16.16 A conjugate acid has one more H* than its conjugate base.

(a) HCN (b) OH (c) $H_2PO_4^-$ (d) $C_2H_5NH_3^-$

16.18		B-L acid	+	B-L base	-	Cont		
9	(a)	HBrO(aq)		H ₂ O(I) HCO ₃ -(aq)		Conjugate acid	+	Conjugate base
	(b)	HSO ₄ -(aq)				H ₃ O ⁺ (aq)		BrO*(aq)
						H ₂ CO ₃ (aq)		SO ₄ ² -(aq)
	(c)	H ₃ O ⁺ (aq)		HSO ₃ -(aq)		H ₂ SO ₃ (aq)		
								H ₂ O(I)

16.22 (a) C₂H₃O₂-, weak base; HC₂H₃O₂, weak acid

- (b) HCO3-, weak base; H2CO3, weak acid
- (c) O₂⁻, strong base; OH⁻, negligible acid
- (d) Cl-, negligible base; HCl, strong acid
- (e) NH₃, weak base; NH₄+, weak acid

16.44 For a strong acid, which is completely ionized, [H+] = the initial acid concentration.

- (a) $0.00835 \text{ M HNO}_3 = 0.00835 \text{ M H}^+$; pH = $-\log (0.00835) = 2.08$
- (b) $\frac{0.525 \text{ g HClO}_4}{2.00 \text{ L soln}} \times \frac{1 \text{ mol HClO}_4}{100.5 \text{ g HClO}_4} = 2.612 \times 10^{-3} = 2.61 \times 10^{-3} \text{ M HClO}_4$ $[H^+] = 2.61 \times 10^{-3} \text{ M; pH} = -\log (2.612 \times 10^{-3}) = 2.583$
- (c) $M_c \times V_c = M_d \times V_d$; 0.500 L = 500 mL 1.00 M HCl × 5.00 mL HCl = M_d HCl × 500 mL HCl M_d HCl = $\frac{1.00 M \times 5.00 mL}{500 mL} = 1.00 \times 10^{-2} M$ HCl = $1.00 \times 10^{-2} M$ H⁺ pH = $-\log (1.00 \times 10^{-2}) = 2.000$
- (d) $[H^{+}]_{total} = \frac{\text{mol } H^{+} \text{ from } HCl + \text{mol } H^{+} \text{ from } HI}{\text{total } L \text{ solution}}; \text{ mol } = M \times L$ $[H^{+}]_{total} = \frac{(0.020 \text{ M } HCl \times 0.0500 \text{ L}) + (0.010 \text{ M } HI \times 0.150 \text{ L})}{0.200 \text{ L}}$ $[H^{+}]_{total} = \frac{1.0 \times 10^{-3} \text{ mol } H^{+} + 1.50 \times 10^{-3} \text{ mol } H^{+}}{0.200 \text{ L}} = 0.0125 = 0.013 \text{ M}$ $pH = -\log (0.0125) = 1.90$

16.54
$$HC_8H_7O_2$$
 (aq) $\rightleftharpoons H^+$ (aq) $+ C_8H_7O_2^-$ (aq); $K_a = \frac{[H^+][C_8H_7O_2^-]}{[HC_8H_7O_2]}$
 $[H^+] = [C_8H_7O_2^-] = 10^{-2.68} = 2.09 \times 10^{-3} = 2.1 \times 10^{-3} M$

[HC₈H₇O₂] = 0.085 - 2.09 × 10⁻³ = 0.0829 = 0.083 M

$$K_a = \frac{(2.09 \times 10^{-3})^2}{0.0829} = 5.3 \times 10^{-5}$$

16.78 (a)
$$pOH = 14.00 - 9.95 = 4.05$$
; $[OH^{-}] = 10^{-4.05} = 8.91 \times 10^{-6} = 8.9 \times 10^{-5} M$

$$C_{18}H_{21}NO_{3}(aq) + H_{2}O(1) \implies C_{18}H_{21}NO_{3}H^{+}(aq) + OH^{-}(aq)$$
initial $0.0050 M$ 0

$$equil. (0.0050 - 8.9 \times 10^{-5}) \qquad 8.9 \times 10^{-5} M \qquad 8.9 \times 10^{-5} M$$

$$K_{b} = \frac{[C_{18}H_{21}NO_{3}H^{+}][OH^{-}]}{[C_{18}H_{21}NO_{3}]} = \frac{(8.91 \times 10^{-5})^{2}}{(0.0050 - 8.91 \times 10^{-5})} = 1.62 \times 10^{-5} = 1.6 \times 10^{-6}$$

- (b) $pK_b = -\log(K_b) = -\log(1.62 \times 10^{-5}) = 5.79$
- 16.86 (a) acidic; Cr³⁺ is a highly charged metal cation and a Lewis acid; Br⁻ is negligible.
 - (b) neutral; both Li⁺ and I⁻ are negligible.
 - (c) basic; PO₄³⁻ is the conjugate base of HPO₄²⁻; K^{*} is negligible.
 - (d) acidic; CH₃NH₃⁺ is the conjugate acid of CH₃NH₂; Cl⁻ is negligible.
 - (e) acidic; HSO_4^- is a negligible base, but a fairly strong acid ($K_a = 1.2 \times 10^{-2}$). K^+ is negligible.
- 16.96 (a) NO₂ (HNO₃ is the stronger acid because it has more nonprotonated O atoms, so NO₂ is the stronger base.)
 - (b) PO₄³⁻ (K_a for HAsO₄²⁻ is greater than K_a for HPO₄²⁻, so K_b for PO₄³⁻ is greater and PO₄³⁻ is the stronger base. Note that P is more electronegative than As and H₃PO₄ is a stronger acid than H₃AsO₄, which could lead to the conclusion that AsO₄³⁻ is the stronger base. As in all cases, the measurement of base strength, K_b, supercedes the prediction. Chemistry is an experimental science.

0 -1 1 1 -1 0 -1 0 ----- -----

(c) CO₃²⁻ (The more negative the anion, the stronger the attraction for H⁺.)