
Searching for Autarkies to Trim Unsatisfiable
Clause Sets

Mark Liffiton and Karem Sakallah

Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor 48109-2121

{liffiton,karem}@eecs.umich.edu

Abstract. An autarky is a partial assignment to the variables of a
Boolean CNF formula that satisfies every clause containing an assigned
variable. For an unsatisfiable formula, an autarky provides information
about those clauses that are essentially independent from the infeasibil-
ity; clauses satisfied by an autarky are not contained in any minimal un-
satisfiable subset (MUS) or minimal correction subset (MCS) of clauses.
This suggests a preprocessing step of detecting autarkies and trimming
such independent clauses from an instance prior to running an algorithm
for finding MUSes or MCSes. With little existing work on algorithms for
finding autarkies or experimental evaluations thereof, there is room for
further research in this area. Here, we present a novel algorithm that
searches for autarkies directly using a standard satisfiability solver. We
investigate the autarkies of several industrial benchmark suites, and ex-
perimental results show that our algorithm compares favorably to an
existing approach for discovering autarkies. Finally, we explore the po-
tential of trimming autarkies in MCS- or MUS-extraction flows.

1 Introduction

Analysis of the infeasibility of unsatisfiable Boolean satisfiability problems has
recently received increasing attention, though still little when compared to the
efforts directed toward solutions to the problem of deciding the satisfiability of
a Boolean formula (SAT). In many cases, the answer returned by a SAT solver
given an infeasible formula, “UNSAT,” is not sufficient information, and tools
for further analysis are necessary.

Two such tools are the related concepts of minimal unsatisfiable subsets
(MUSes) and minimal correction subsets (MCSes). Both MUSes and MCSes
are irreducible portions of a formula that contain information relevant to un-
derstanding and correcting the formula’s infeasibility while ignoring unrelated
information. Several algorithms have been developed for computing MUSes and
MCSes, including algorithms for finding a single, often approximate MUS (e.g.,
[6, 9, 16, 21]); finding a smallest MUS (SMUS, also called a minimum unsatisfi-
able core) [14]; and finding both all MCSes and all MUSes [13]. The work in
[13], a focus of this paper, has found applications in finding all MCSes for circuit
error diagnosis [17] and all MUSes as part of an abstraction refinement flow [1].

Autarkies provide another tool for looking into the structure of an unsatisfi-
able formula; they essentially provide information about portions of the formula
that can be considered independent of the infeasibility. Autarkies have recently
been linked to MUSes in [12], where Kullmann, et al., develop a classification
of clauses in Boolean formulas based on their involvement in MUSes, autarkies,
and resolution refutations. They use CAMUS (“Compute All Minimal Unsatis-
fiable Subsets”) [13], a tool for computing all MUSes of a Boolean formula, and
the only existing full approach for finding autarkies of which we are aware (first
introduced in [11]) to investigate the complete set of MUSes and the autarkies,
respectively, of a set of industrial benchmarks. They do not report runtime re-
sults, and we are not aware of any other experimental research on algorithms for
finding the largest, or maximum, autarky of an instance.

In [12], the authors suggest two directions of research that we have under-
taken in this paper:

1. An algorithm that directly searches for autarkies could be developed and
compared to their algorithm, which makes use of a “duality” between au-
tarkies and resolution refutations to find autarkies indirectly.

2. As clauses involved in autarkies are never contained in any MUS, such clauses
can be removed as a preprocessing step for computing MUSes of a formula.
(This also holds for MCSes, as they are comprised of the same clauses as
MUSes.)

We have developed a novel algorithm, named Sifter, that directly performs
a complete search for maximum autarkies, and we compare it to the existing
approach based on resolution proofs. We also investigate the use of this algorithm
as a preprocessing step to trim autarkies from unsatisfiable instances before
searching for MUSes or MCSes.

This paper is organized as follows. Section 2 lays out formal definitions and
concepts used throughout the paper. We review previous work related to au-
tarkies in Section 3, and in Section 4, we introduce our new algorithm for finding
maximum autarkies, Sifter. Experimental results comparing Sifter to the previ-
ous approach and investigating its use as a preprocessing step for two algorithms
that operate on unsatisfiable formulas are shown and discussed in Section 5. Fi-
nally, Section 6 concludes with a brief overview of the paper and potential future
work.

2 Preliminaries

Boolean Satisfiability and Conjunctive Normal Form. Formally, a Boolean for-
mula C in conjunctive normal form (CNF) is defined as follows:

C =
∧

i=1...n

Ci

Ci =
∨

j=1...ki

aij

where each literal aij is either a positive or negative instance of some Boolean
variable (e.g., x3 or ¬x3, where the domain of xj is {0, 1}), the value ki is the
number of literals in the clause Ci (a disjunction of literals), and n is the number
of clauses in the formula. In more general terms, each clause is a constraint of
the constraint system C. A CNF instance is said to be satisfiable (SAT) if there
exists some assignment to its variables that makes the formula evaluate to 1
or TRUE; otherwise, we call it unsatisfiable (UNSAT). A SAT solver evaluates
the satisfiability of a given CNF formula and returns a satisfying assignment
of its variables if it is satisfiable, and some produce resolution refutations (or
resolution proofs) for unsatisfiable instances, directed acyclic graphs containing
the resolution steps used to prove unsatisfiability.

The following unsatisfiable CNF instance C will be used as an example in
this paper. We will refer to individual clauses as Ci, where i refers to the position
of the clause in the formula (e.g., C3 = (¬x1 ∨ ¬x2)).

C = (x1)(¬x1 ∨ x2)(¬x1 ∨ ¬x2)(¬x2 ∨ x3)(x4 ∨ x5)(¬x4 ∨ ¬x5)

AtMost Constraints. Our algorithm employs AtMost constraints, a type of count-
ing constraint that can be constructed from Boolean CNF constraints or added
to a SAT solver with few modifications. Given a set of n literals {l1, l2, . . . , ln}
and a positive integer k, s.t. k < n, an AtMost constraint is defined as

AtMost({l1, l2, . . . , ln}, k) ≡
n∑

i=1

val(li) ≤ k

where val(li) is 1 if li is assigned TRUE and 0 otherwise. This constraint places
an upper bound on the number of literals in the set assigned TRUE.

This constraint can be encoded into Boolean CNF using encodings such as in
[18], or it can be implemented efficiently in a SAT solver that employs watched
variables (such as MiniSAT [7], which we use in this work). An implementation
of an AtMost constraint can watch the assignments to the variables in the con-
straint and immediately propagate the negation of each remaining literal once k
of them have been assigned TRUE. On a closed SAT solver that does not allow
for a built-in implementation of the AtMost constraint, the CNF encoding can
still be used.

Minimal Unsatisfiable Subsets / Minimal Correction Subsets. The definitions of
Minimal Unsatisfiable Subsets (MUSes) and Minimal Correction Subsets (MCSes)
of clauses are important to this work, as we are looking at the use of autarkies
in preprocessing steps for algorithms that find MUSes and MCSes. An MUS is a
subset of the clauses of an unsatisfiable formula that is unsatisfiable and cannot
be made smaller without becoming satisfiable. An MCS is a subset of the clauses
of an unsatisfiable formula whose removal from that formula results in a satis-
fiable formula (“correcting” the infeasibility) and that is minimal in the same
sense that any proper subset does not have that defining property. Any unsatis-
fiable formula can have multiple MUSes and MCSes, potentially exponential in
the number of clauses.

As proven in [3], there is a duality between MUSes and MCSes such that for
a given instance, the complete set of MUSes (resp. MCSes) can be generated
by finding all minimal hitting sets of the complete set of MCSes (resp. MUSes).
This fact is used in [13] as the foundation for CAMUS, a set of two algorithms
that computes all MUSes of an instance by way of first computing all MCSes.
A corollary of this is that the union of all MUSes is equivalent to the union of
all MCSes.

Our example contains one MUS, {C1, C2, C3}, and its MCSes are the single-
clause sets {C1}, {C2}, and {C3}.

Autarkies. An autarky (or autark assignment) is an assignment to a subset of
a formula’s variables that satisfies every clause containing one of the assigned
variables. Following the meaning of the term in other fields, it is a self-sufficient
partial assignment. Because we are interested in trimming clause sets in this
work, we will refer to autarkies in terms of the clauses they satisfy. Thus, the
maximum autarky for us is the largest set of clauses satisfiable by an autarky,
as opposed to the largest partial assignment. The maximum autarky for our
example formula C is {C4, C5, C6}, which in this case is the complement of
the one MUS, and it is satisfied by the partial assignment {x3 = TRUE, x4 =
TRUE, x5 = FALSE}.

As explained in [10], any clause satisfied by some autarky can not be con-
tained in any MUS (nor in any MCS, as they are comprised of the same clauses).
This motivates the idea of preprocessing unsatisfiable formulas by removing their
maximum autarkies before searching for MUSes or MCSes.

Pure Literals. One simple form of autarky arises from pure literals. A pure literal
is a variable that occurs in only one polarity (either always positive or always
negated) in a CNF formula. In our example formula, x3 is a pure literal, because
¬x3 is not present. An assignment of TRUE to a pure literal will trivially satisfy
any clause containing the corresponding variable, thus any such assignment is
an autarky.

Pure literals can be found in a linear time scan of a formula. Removing
the clauses satisfied by pure literals may cause other literals to become pure in
the formula, so repeatedly detecting, recording, and removing pure literals is a
simple first step for any algorithm that finds autarkies. The process terminates
when the formula no longer contains pure literals.

3 Previous Work

Monien and Speckenmeyer [15] first introduced the concept of an autark as-
signment or autarky, using autarkies in a modification of the DPLL satisfiability
algorithm [4, 5] that reduced its complexity upper bound below 2n splitting steps
(for a formula with n variables). Autarkies were later used in another satisfia-
bility algorithm by Van Gelder [20] named Modoc. Modoc integrates autarky
pruning, removing those clauses satisfied by autarkies, into a resolution-based

model elimination approach to satisfiability. Both Monien and Speckenmeyer’s
algorithm and Modoc find autarkies as side-effects of their operation, but nei-
ther is aiming to find the maximum autarky. Additionally, both find many more
“conditional autarkies,” i.e., autarkies that appear after propagating a partial
assignment through the formula, than “top-level autarkies” for the entire for-
mula.

More recently, Kullmann has investigated autarkies in several papers. In
[10], he introduces the idea of lean clause-sets, sets of clauses that have no
autarkies. The largest lean clause-set is the complement of the maximum autarky
of a formula; all clauses can be partitioned into one or the other. Kullmann
investigates a special case of autarky that can be found in polynomial time using
linear programming, though this does not generalize to finding all autarkies. He
also proves, with Theorem 3.16, that a set of clauses F is lean “if and only if
every clause of F can be used by some resolution refutation of F .” Conversely,
a set of clauses A ⊆ F is an autarky if and only if each clause in A can not
be used in any resolution refutation of F . Later, in [11], Kullmann uses this
fact to develop an algorithm for computing the maximum autarky. Using a SAT
solver that provides a resolution refutation for unsatisfiable instances, one can
iteratively remove the variables included in some resolution proof. When the
reduced formula becomes satisfiable, the satisfying assignment is an autarky of
the original formula. This is the algorithm to which we compare ours in Section
5.

Finally, Kullmann, et al. [12] use both autarkies and MUSes as tools to de-
scribe and examine unsatisfiable formulas. They characterize clauses in such
formulas into several classes based on each clause’s involvement in MUSes, res-
olution refutations, and autarkies. Clauses contained in every MUS are called
“necessary”; those in any MUS are “potentially necessary”; “usable” indicates a
clause is in some resolution refutation; and thus “unusable” refers to clauses in
an autarky. Complements and intersections of these classes are defined as well.
They experimentally evaluate a set of industrial benchmarks from an automo-
tive product configuration domain [19], reporting on the MUSes and clauses in
the different levels of “necessity” in each instance. To compute all MUSes of the
instances, they use CAMUS [13], and they found maximum autarkies using the
algorithm described in [11], implemented using the ZChaff SAT solver’s ability
to produce resolution refutations [21].

4 Searching for Autarkies

Our approach to the problem of finding the maximum autarky for a formula
treats it as an optimization problem. We search for the largest partial assign-
ment that satisfies the clauses it touches, i.e., the largest autarky, by explicitly
searching in the space of all partial assignments and maximizing the size of the
result (in terms of the number of satisfied clauses). Specifically, we “instrument”
the formula to give a standard SAT solver the ability to enable and disable
individual clauses and variables within its normal search, and we use AtMost

constraints to perform a sliding objective maximization of the autarky size. This
draws inspiration from a similar technique we employed in [13] that uses a less-
involved instrumentation and the same optimization technique to allow a SAT
solver to search for maximal satisfiable subsets of clauses. We directly exploit
the efficiency gains made in SAT solvers in recent years by using an “off-the-
shelf” solver; our algorithm works with any solver1, so it can benefit from future
improvements as well.

4.1 Instrumentation

To give a SAT solver the ability to search for autarkies, we instrument a formula
C with the following modifications:

1. We replace every literal in the formula with a literal-substitute; xj in the
formula becomes x1

j , while ¬xj is replaced with x0
j .

2. Each clause Ci is augmented with a clause-selector yi to form a new clause
C ′

i = (yi → Ci) = (¬yi ∨ Ci).
3. We create a variable-selector x+

j for every variable xj . When x+
j is TRUE, xj

will be enabled, and it is disabled otherwise. For every variable xj , we add
clauses to relate its variable-selector x+

j , its two literal-substitutes x0
j and

x1
j , and the value of the variable itself, xj . In short, we want each literal-

substitute to be TRUE when the variable is enabled (x+
j is TRUE) and xj has

the corresponding value. This leads to new clauses encoding the following:
(x1

j = x+
j ∧ xj) and (x0

j = x+
j ∧ ¬xj).

4. Finally, we add clauses to require that a clause be enabled (yi = TRUE) if
any one of its variables is enabled. Thus, for any xj present in clause Ci, we
add a clause (x+

j → yi) = (¬x+
j ∨ yi).

This is not the only option for instrumenting the formula; other encodings have
the same effect. However, while preliminary experiments showed that similar
encodings yield slightly different runtimes, the differences in efficiency were not
substantial.

The complete instrumented formula for our example is too large to be useful
here, but here we show the constraints produced from a single clause of the
example, C2:

C2, (¬x1 ∨ x2) =⇒

1 & 2: (¬y2 ∨ x0

1 ∨ x1
2)

3:
(x1

1 = x+
1 ∧ x1)(x0

1 = x+
1 ∧ ¬x1)

(x1
2 = x+

2 ∧ x2)(x0
2 = x+

2 ∧ ¬x2)

4: (¬x+
1 ∨ y2)(¬x+

2 ∨ y2)

The clause derived from modifications 1 and 2 replaces the original clause,

while the rest are additions. The clauses from modification 3 (presented in short-
hand as equalities; each is three clauses in CNF) are specific to variables, and
1 SAT solvers that implement AtMost constraints internally will likely perform better

than those that require using a CNF encoding of them, but all will work.

the complete formula will only contain each set once per variable. The final two
clauses, resulting from modification 4, are specific to C2.

With the formula instrumented in this way, any satisfying assignment will
indicate an autarky of the original formula. The x+

j variables indicate which
variables are “activated,” i.e., included in the autarky; the original variables
contain the autarky assignment; and the clauses satisfied by the autarky are
represented by those yi variables set to TRUE. One such assignment is the
trivial solution in which all variables and all clauses are disabled. To find the
maximum autarky, we must maximize the number of enabled clauses.

4.2 Our Algorithm

We maximize the number of enabled clauses (yi variables assigned TRUE) by
way of an iterative optimization approach. We use AtMost constraints to bound
the number of disabled clauses, tightening the bound as solutions are found. If
an autarky is found that leaves n clauses disabled, we start the search for a larger
autarky by bounding the disabled clauses to n − 1. Eventually, if the instance
is unsatisfiable, we will reach a bound k for which no solution can be found. At
this point, we have proven that there exists an autarky of size k − 1 and none
with size k, thus the previously found autarky is the maximum autarky.

Sifter(C)

1. (C, autarky)← PureLits(C)
2. C′ ← Instrument(C)
3. bound← |C| − 1
4. loop
5. C′

b ← C′ ∧AtMost({¬y1,¬y2, . . . ,¬yn}, bound)
6. (isSAT, model)← Solve(C′

b)
7. if not isSAT

8. return autarky

9. autarky← autarky ∪ SatisfiedClauses(model)
10. bound← |C| − |autarky| − 1

Fig. 1. Sifter finds the maximum autarky of a CNF formula C by “instrumenting” the
instance and using a SAT solver to search for satisfying partial assignments.

Figure 1 contains pseudocode for the complete algorithm, which we call Sifter.
First, we repeatedly scan for pure literals, recording and removing them as de-
scribed in Section 2: the call to PureLits returns 1) C with any clauses con-
taining pure literals removed and 2) the set of such clauses as an initial autarky.
We then instrument the formula and use the sliding objective method described
above to find the rest of the maximum autarky or to prove that the pure literal
approach found it in its entirety. The Instrument subroutine produces instru-
mented clauses via the modifications described in Section 4.1. The bound on the

number of disabled clauses is set initially to |C| − 1 to begin the search by look-
ing for an autarky that satisfies at least one clause, and the loop then proceeds
by searching for a satisfying assignment, model, of the instrumented, bounded
formula, C ′

b. If none is found (isSAT is false), the algorithm returns autarky,
which must be the maximum autarky. Otherwise, the satisfied clauses are added
to autarky, the bound is set to search for an autarky that satisfies at least one
more clause, and the loop repeats.

5 Experimental Results

Our two experimental goals are 1) to compare and contrast Sifter, our direct
search-based approach for finding the maximum autarky, with the earlier it-
erative technique using resolution refutation trees [11], and 2) to investigate
the value of trimming autarkies as a preprocessing step for finding MUSes and
MCSes.

5.1 Comparing Search to an Iterated Resolution Proof Approach

We implemented Sifter in C++ using MiniSAT [7] version 1.12b (the last version
containing support for AtMost constraints). We wrote the iterative approach [11],
which we will call Scraper, as a Perl script. First, Scraper uses the pure literal
elimination written for Sifter, making that phase equivalent in both implemen-
tations. Then, it employs the tools zchaff and zverify df [21] from the ZChaff
distribution zchaff.64bit.2007.3.12 to repeatedly produce resolution refuta-
tions and eliminate the involved variables until the instance becomes satisfiable.
We compiled all executables for the x86-64 instruction set using GCC 4.1.2 with
standard optimizations, and all experiments were run under Linux (Fedora 7)
on a 3.0GHz Intel Core 2 Duo E6850 with 4GB of RAM.

Figure 2 contains a log-log scatterplot comparing the runtimes of Sifter and
Scraper on a variety of industrial benchmarks. Runtimes for Sifter are repre-
sented on the y-axis, so points lying below the diagonal indicate instances in
which Sifter outperforms Scraper. A timeout of 600 seconds was used for every
run, indicated by the dashed lines on the extremes of the chart; points on these
lines indicate that a timeout was reached by the corresponding algorithms. The
reported runtimes are processor time, which for Sifter are essentially equivalent
to wall-clock time. Our implementation of Scraper, however, stores several inter-
mediate results to disk; we ignore this I/O time in these results to estimate the
runtime of a more efficient approach that retains everything in memory.

To provide a more complete understanding of these results, Table 1 lists some
overall characteristics of each benchmark family. We list the minimum and max-
imum number of variables, number of clauses, and size of the maximum autarky
(in clauses) for the instances in each family. The Benz benchmarks2 are the auto-
motive product configuration instances from [19] used in the experiments in [12].
The Miter family3 contains equivalence checking instances from João Marques-
2 http://www-sr.informatik.uni-tuebingen.de/∼sinz/DC/
3 http://sat.inesc.pt/benchmarks/cnf/equiv-checking/instances/

0.0001

0.001

0.01

0.1

1

10

100

1000

0.0001 0.001 0.01 0.1 1 10 100 1000

Scraper (seconds)

S
if
te
r
(s
e
c
o
n
d
s
)

Benz

Miter

Dimacs

nPipe

BMC:Barrel

BMC:Longmult

BMC:Queueinvar

600 sec.

timeout

600 sec.

timeout

Fig. 2. Comparing the performance of Sifter and Scraper on a variety of benchmarks

Silva. The Dimacs instances are circuit benchmarks from the DIMACS set. The
nPipe instances are from Miroslav Velev’s FVP-UNSAT-2.0 benchmarks4, gen-
erated for the formal verification of microprocessors, with redundant variables
removed. The BMC:[] instances5 are formulas used in bounded model checking
(BMC) as described in [2].

From Figure 2 and Table 1, we can draw several conclusions:

1. Across all of the benchmarks, neither Sifter nor Scraper dominates the other
in terms of runtime. In some benchmarks, Scraper is faster, up to 20x, while
in others, Sifter is faster, up to 46x.

2. In just those benchmarks with non-trivial autarkies, however, our Sifter al-
gorithm is faster in nearly every instance. Specifically, looking at the Benz
and Miter families (the autarkies covering 2 clauses in each BMC:Longmult
instance are all found by pure-literal elimination alone), we see that Sifter
outperforms Scraper by approximately one order of magnitude.

3. The presence and size of autarkies is fairly consistent within benchmark
families. Each particular family in Dimacs, nPipe, and BMC:[] has either no
autarkies in any instance or an autarky that covers 2 clauses in each. The
Benz family consistently has autarkies that cover a large portion (between
32 and 98 percent) of each instance’s clauses. Every instance in the Miter
family has a non-empty autarky, though the autarky sizes vary more than
they do in the Benz instances.

4 http://www.miroslav-velev.com/sat benchmarks.html
5 http://www.cs.cmu.edu/∼modelcheck/bmc/bmc-benchmarks.html

Family Variables Clauses |autarky|
min max min max min max

Benz 1,513 1,891 4,013 9,957 2,097 7,025

Miter 1,266 17,303 1,027 34,238 1 1,831

Dimacs 389 7,767 1,115 20,812 0 0

nPipe 861 15,469 6,695 394,739 0 0

BMC:Barrel 50 8,903 159 36,606 0 0

BMC:Longmult 437 7,807 1,206 24,351 2 2

BMC:Queueinvar 116 2,435 399 20,671 0 0

Table 1. Benchmark Characteristics

Overall, these conclusions imply a strategy for exploiting autarkies in prac-
tice. First, by searching for autarkies on a small representative set of instances
from a particular application, one can determine whether the instances in that
domain have autarkies at all. If none of the test set have autarkies of any appre-
ciable size, then it is likely that none generated in the application will, in which
case autarkies will be of no use. This is likely in applications such as bounded
model checking, where performing a cone of influence reduction of the circuit
will likely eliminate all autarkies. In these applications, checking for autarkies
could be a simple test of the sanity of the CNF encoding. In the other case, in
which instances do contain autarkies, it is probable that most if not all instances
will have autarkies, and Sifter is likely the more efficient algorithm to use.

5.2 Trimming Autarkies to Boost Searching for MUSes and MCSes

Trimming autarkies holds the most promise for boosting algorithms that have a
high complexity and are affected heavily by the number of clauses in an instance.
An algorithm for finding any single unsatisfiable subformula, such as that devel-
oped in ZChaff [21], is unlikely to benefit from such boosting, as the time taken
to find the maximum autarky will likely dwarf the runtime of the unboosted
algorithm.

We identified two algorithms that are good candidates for this boosting. One
is the first phase of CAMUS [13], which finds all MCSes of a formula as the first
step of solving several related problems such as computing all MUSes or finding
the smallest MUS (SMUS) of a CNF formula. In addition to computing MUSes,
this algorithm has been applied (without the second phase) in a circuit error
diagnosis system [17], in which the MCSes were used directly. A second algorithm
with potential for boosting by trimming autarkies is that by Mneimneh, et. al.
[14] for computing an SMUS directly, which we will refer to as SMUS. Both of
these candidate algorithms use clause-selector variables (as used in Sifter and
described in Section 4.1) and use a SAT solver to implicitly search through
subsets of clauses. Therefore, both can benefit from the reduced search space
produced by a reduction in the number of input clauses.

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Without trimming autarkies (seconds)

A
u
ta
rk
ie
s
 t
ri
m
m
e
d
 (
s
e
c
o
n
d
s
)

600 sec.

timeout

600 sec.

timeout

Fig. 3. Boosting SMUS by trimming autarkies for the Benz benchmarks

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Without trimming autarkies (seconds)

A
u
ta
rk
ie
s
 t
ri
m
m
e
d
 (
s
e
c
o
n
d
s
)

600 sec.

timeout

600 sec.

timeout

Fig. 4. Boosting CAMUS (first phase) by trimming autarkies for the Benz benchmarks

We investigated the impact of trimming autarkies on both of these algorithms
for the Benz benchmarks, which have the largest autarkies, and the results are
displayed in Figures 3 and 4. Each figure is a log-log scatterplot that charts the
runtime of the specified algorithm alone on the x-axis against the runtime of
the boosted version on the y-axis. The runtime reported for the boosted version
is the sum of finding an instance’s maximum autarky with Sifter and running
the algorithm on the trimmed instance. A point below the diagonal indicates an
instance for which the boosting produced a net decrease in runtime.

The results are mixed. In Figure 3, we see that the boosting does not produce
markedly better or worse results overall for finding SMUSes with SMUS. While
the runtimes for SMUS alone (not shown) do improve in nearly all cases when
it is run on the trimmed instances, the runtime of Sifter outweighs this gain in
many cases. There are two outliers: one in which SMUS’s runtime improves by
over two orders of magnitude when run on the trimmed instance, and another
that takes less than 10 seconds on the untrimmed instance yet times out at
600 seconds on the trimmed version. These are artifacts of the susceptibility of
combinatorial search algorithms like SMUS to variations in runtime due to minor
ordering changes and similar effects.

The results for boosting the first phase of CAMUS, shown in Figure 4, show
that the boosting does have value in some cases. For this algorithm, the runtime
of Sifter can outweigh the decrease in runtime due to the boosting in cases with
small runtimes (below 1 second in these benchmarks), but the boosted algorithm
always outperforms the original algorithm in cases with longer runtimes. Taken
as a whole, this is a net benefit, because the runtime increases in some “small”
instances are far outweighed by the gains in the “large” instances. The total run-
time, over all instances that did not time out in both techniques, decreased from
931 seconds on untrimmed instances to 704 seconds for the boosted algorithm,
a 24% decrease in total runtime.

6 Conclusions and Future Work

We are aware of only one existing algorithm for computing maximum autarkies,
presented in [11], and no experimental research investigating the runtime of find-
ing maximum autarkies has been published prior to this work. Furthermore, little
research has been conducted in the area of autarkies for Boolean satisfiability,
and no “industrial” application has previously been identified for them.

In this paper, we have presented a new algorithm, Sifter, for finding maximum
autarkies that searches for them directly with a standard SAT solver and an
“instrumented” formula. We have evaluated it experimentally, comparing it to
the existing approach based on iterated construction of resolution refutations, on
a variety of industrial benchmarks. In our results, Sifter outperforms the other
algorithm on benchmarks with autarkies, though the results are mixed on those
with none.

We have also performed an initial exploration of the use of autarky trimming
as a preprocessing step for complex algorithms for finding MUSes and MCSes.

We used Sifter to boost two different algorithms by trimming maximum autarkies
from instances before searching for MUSes or MCSes. While the boosted version
of an algorithm for finding the smallest MUS of a formula was not (overall)
faster or slower than the normal version, the boosted version of the first phase
of CAMUS [13], which finds all MCSes of an instance, was noticeably faster.
The overhead of the trimming often outweighed runtime gains on instances that
completed in under one second, but the trimming was beneficial on long-running
instances; we obtained a total runtime reduction of 24% over all instances that
did not time out.

As future work, we can look into improving the efficiency of Sifter, possibly
by using a new encoding to instrument formulas or by employing a different
optimization method. Also, more work can be done to explore the structure and
characteristics of autarkies in real-world Boolean formulas; the results here show
that there is much variation among benchmark families, with some containing
no autarkies at all. The use of conditional autarkies (autarkies that arise follow-
ing the assignment of some variables) in algorithms for analyzing unsatisfiable
instances is worth investigating as well. In the area of boosting MUS algorithms,
it would be interesting to compare autarky-trimming with the local search used
to boost the first phase of CAMUS in [8] by quickly identifying candidate MCSes
before the complete search begins.

Acknowledgments

This material is based upon work supported by the National Science Founda-
tion under ITR Grant No. 0205288. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the view of the National Science Foundation (NSF).

References

1. Z. S. Andraus, M. H. Liffiton, and K. A. Sakallah. Refinement strategies for verifica-
tion methods based on datapath abstraction. In Proceedings of the 2006 conference
on Asia South Pacific design automation (ASP-DAC’06), pages 19–24, 2006.

2. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proceedings of the 5th International Conference on Tools and Algorithms
for Construction and Analysis of Systems (TACAS’99), volume 1579 of LNCS,
pages 193–207, 1999.

3. E. Birnbaum and E. L. Lozinskii. Consistent subsets of inconsistent systems: struc-
ture and behaviour. Journal of Experimental and Theoretical Artificial Intelligence,
15:25–46, 2003.

4. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):394–397, 1962.

5. M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-
nal of the ACM, 7(3):201–215, 1960.

6. N. Dershowitz, Z. Hanna, and A. Nadel. A scalable algorithm for minimal unsatisfi-
able core extraction. In Proceedings of the 9th International Conference on Theory

and Applications of Satisfiability Testing (SAT-2006), volume 4304 of LNCS, pages
36–41, 2006.

7. N. Eén and N. Sörensson. An extensible SAT-solver. In Proceedings of the 6th In-
ternational Conference on Theory and Applications of Satisfiability Testing (SAT-
2003), volume 2919 of LNCS, pages 502–518, 2003.

8. É. Grégoire, B. Mazure, and C. Piette. Boosting a complete technique to find
MSSes and MUSes thanks to a local search oracle. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence (IJCAI’07), volume 2,
pages 2300–2305, January 2007.

9. É. Grégoire, B. Mazure, and C. Piette. Local-search extraction of MUSes. Con-
straints, 12(3):325–344, 2007.

10. O. Kullmann. Investigations on autark assignments. Discrete Applied Mathematics,
107(1-3):99–137, 2000.

11. O. Kullmann. On the use of autarkies for satisfiability decision. In LICS 2001
Workshop on Theory and Applications of Satisfiability Testing (SAT-2001), vol-
ume 9 of Electronic Notes in Discrete Mathematics, pages 231–253, 2001.

12. O. Kullmann, I. Lynce, and J. Marques-Silva. Categorisation of clauses in con-
junctive normal forms: Minimally unsatisfiable sub-clause-sets and the lean kernel.
In Proceedings of the 9th International Conference on Theory and Applications of
Satisfiability Testing (SAT-2006), volume 4121 of LNCS, pages 22–35, 2006.

13. M. H. Liffiton and K. A. Sakallah. Algorithms for computing minimal unsatisfiable
subsets of constraints. Journal of Automated Reasoning, 40(1):1–33, January 2008.

14. M. N. Mneimneh, I. Lynce, Z. S. Andraus, J. P. M. Silva, and K. A. Sakallah. A
branch-and-bound algorithm for extracting smallest minimal unsatisfiable formu-
las. In Proceedings of the 8th International Conference on Theory and Applications
of Satisfiability Testing (SAT-2005), volume 3569 of LNCS, pages 467–474, 2005.

15. B. Monien and E. Speckenmeyer. Solving satisfiability in less than 2n steps. Dis-
crete Applied Mathematics, 10(3):287–295, March 1985.

16. Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, and I. L. Markov. AMUSE:
a minimally-unsatisfiable subformula extractor. In Proceedings of the 41st Annual
Conference on Design Automation (DAC’04), pages 518–523, 2004.

17. S. Safarpour, M. Liffiton, H. Mangassarian, A. Veneris, and K. Sakallah. Improved
design debugging using maximum satisfiability. In Proceedings of the International
Conference on Formal Methods in Computer-Aided Design (FMCAD’07), pages
13–19, November 2007.

18. C. Sinz. Towards an optimal CNF encoding of Boolean cardinality constraints.
In Proceedings of the 11th International Conference on Principles and Practice of
Constraint Programming (CP’05), pages 827–831, 2005.

19. C. Sinz, A. Kaiser, and W. Küchlin. Formal methods for the validation of auto-
motive product configuration data. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 17(1):75–97, 2003.

20. A. Van Gelder. Autarky pruning in propositional model elimination reduces failure
redundancy. Journal of Automated Reasoning, 23(2):137–193, 1999.

21. L. Zhang and S. Malik. Extracting small unsatisfiable cores from unsatisfiable
Boolean formula. In The 6th International Conference on Theory and Applications
of Satisfiability Testing (SAT-2003), 2003.

