Example 1.3

A space explorer of a future era travels to the nearest star, Alpha Centauri, in a rocket with speed \(v = 0.9c \). The distance from earth to the star, as measured from earth, is \(L = 4 \) light years. What is this distance as measured by the explorer, and how long will she say the journey to the star lasts? (A light year is the distance traveled by light in one year, which is just \(c \) multiplied by 1 year, or \(9.46 \times 10^{15} \) kilometers. In many problems it is better to write it as \(1 \) \(c \cdot \) year, since the \(c \) often cancels out, as we will see.)

The distance \(L = 4 \) \(c \cdot \) years is the proper distance between earth and the star (which we assume are relatively at rest). Thus the distance as seen from the rocket is given by the length-contraction formula as

\[
L(\text{rocket frame}) = \frac{L(\text{earth frame})}{\gamma}
\]

If \(\beta = 0.9 \), then \(\gamma = 2.3 \), so

\[
L(\text{rocket frame}) = \frac{4 \, c \cdot \text{years}}{2.3} = 1.7 \, c \cdot \text{years}
\]

We can calculate the time \(T \) for the journey in two ways: As seen from the rocket, the star is initially 1.7 \(c \cdot \) years away and is approaching with speed \(v = 0.9c \). Therefore,

\[
T(\text{rocket frame}) = \frac{L(\text{rocket frame})}{v} = \frac{1.7 \, c \cdot \text{years}}{0.9c} = 1.9 \text{ years} \quad (1.30)
\]

(Notice how the factors of \(c \) conveniently cancel when we use \(c \cdot \) years and measure speeds as multiples of \(c \).)

Alternatively, as measured from the earth frame, the journey lasts for a time

\[
T(\text{earth frame}) = \frac{L(\text{earth frame})}{v} = \frac{4 \, c \cdot \text{years}}{0.9c} = 4.4 \text{ years}
\]

But because of time dilation, this is \(\gamma \) times \(T(\text{rocket frame}) \), which is therefore

\[
T(\text{rocket frame}) = \frac{T(\text{earth frame})}{\gamma} = 1.9 \text{ years}
\]

in agreement with (1.30), of course.

Notice how time dilation (or length contraction) allows an appreciable saving to the pilot of the rocket. If she returns promptly to earth, then as a result of the complete round trip she will have aged only 3.8 years, while her twin who stayed behind will have aged 8.8 years. This surprising result, sometimes known as the twin paradox, is amply verified by the experiments discussed in Section 1.9. In principle, time dilation would allow explorers 40
make in one lifetime trips that would require hundreds of years as viewed from earth. Since this requires rockets that travel very close to the speed of light, it is not likely to happen soon! See Problem 1.22 for further discussion of this effect.

Lengths Perpendicular to the Relative Motion

We have so far discussed lengths that are parallel to the relative velocity, such as the length of a train in its direction of motion. What happens to lengths perpendicular to the relative velocity, such as the height of the train? It is fairly easy to show that for such lengths, there is no contraction or expansion. To see this, consider two observers, Q at rest in S and Q' at rest in S', and suppose that Q and Q' are equally tall when at rest. Now, let us assume for a moment that there is a contraction of heights analogous to the length contraction (1.29). If this is so, then as seen by Q, observer Q' will be shorter as he rushes by. We can test this hypothesis by having Q' hold up a sharp knife exactly level with the top of his head; if Q' is shorter, Q will find himself scalped (or worse) as the knife goes by.

This experiment is completely symmetric between the two frames S and S': There is one observer at rest in each frame, and the only difference is the direction in which each sees the other moving. Therefore, it must also be true that as seen by Q', it is Q who is shorter. But this implies that the knife will miss Q. Since it cannot be true that Q is both scalped and not scalped, we have arrived at a contradiction, and there can be no contraction. By a similar argument, there can be no expansion, and, in fact, the knife held by Q' simply grazes past Q's scalp, as seen in either frame. We conclude that lengths perpendicular to the relative motion are unchanged; and the Lorentz-contraction formula (1.29) applies only to lengths parallel to the relative motion.

1.11 The Lorentz Transformation

We are now ready to answer an important general question: If we know the coordinates x, y, z, and time t of an event, as measured in a frame S, how can we find the coordinates x', y', z', and t' of the same event as measured in a second frame S'? Before we derive the correct relativistic answer to this question, we examine briefly the classical answer.

We consider our usual two frames, S anchored to the ground and S' anchored to a train traveling with velocity v relative to S, as shown in Fig. 1.8. Because the laws of physics are all independent of our choice of origin and orientation, we are free to choose both axes Ox and $O'x'$ along the same line, parallel to v, as shown. We can further choose the origins of time so that $t = t' = 0$ at the moment when O' passes O. We will sometimes refer to this arrangement of systems S and S' as the standard configuration.

![FIGURE 1.8](image)

In classical physics the coordinates of an event are related as shown.

Note that our previous two thought experiments were asymmetric, requiring two observers in one of the frames, but only one in the other.
Now consider an event, such as the explosion of a small firecracker, that occurs at position $x, y, z,$ and time t as measured in S. Our problem is to calculate, in terms of x, y, z, t (and the velocity v) the coordinates x', y', z', t' of the same event, as measured in S' — accepting at first the classical ideas of space and time. First, since time is a universal quantity in classical physics, we know that $t' = t$. Next, from Fig. 1.8 it is easily seen that $x' = x - vt$ and $y' = y$ (and, similarly, $z' = z$, although the z coordinate is not shown in the figure). Thus, according to the ideas of classical physics,

\[
\begin{align*}
 x' &= x - vt \\
 y' &= y \\
 z' &= z \\
 t' &= t
\end{align*}
\]

(1.31)

These four equations are often called the Galilean transformation after Galileo Galilei, who was the first person known to have considered the invariance of the laws of motion under this change of coordinates. They transform the coordinates x, y, z, t of any event as observed in S into the corresponding coordinates x', y', z', t' as observed in S'.

If we had been given the coordinates x', y', z', t' and wanted to find x, y, z, t, we could solve the equations (1.31) to give

\[
\begin{align*}
 x &= x' + vt' \\
 y &= y' \\
 z &= z' \\
 t &= t'
\end{align*}
\]

(1.32)

Notice that the equations (1.32) can be obtained directly from (1.31) by exchanging x, y, z, t with x', y', z', t' and replacing v by $-v$. This is because the relation of S to S' is the same as that of S' to S except for a change in the sign of the relative velocity.

The Galilean transformation (1.31) cannot be the correct relativistic relation between $x, y, z, t,$ and x', y', z', t'. (For instance, we know from time dilation that the equation $t' = t$ cannot possibly be correct.) On the other hand, the Galilean transformation agrees perfectly with our everyday experience and so must be correct (to an excellent approximation) when the speed v is small compared to c. Thus the correct relation between x, y, z, t and x', y', z', t' will have to reduce to the Galilean relation (1.31) when v/c is small.

To find the correct relation between x, y, z, t and x', y', z', t', we consider the same experiment as before, which is shown again in Fig. 1.9. We have noted before that distances perpendicular to v are the same whether measured in S or S'. Thus

\[
y' = y \quad \text{and} \quad z' = z
\]

(1.33)
exactly as in the Galilean transformation. In finding \(x' \), it is important to keep careful track of the frames in which the various quantities are measured; in addition, it is helpful to arrange that the explosion whose coordinates we are discussing produces a small burn mark on the wall of the train at the point \(P' \) where it occurs. The horizontal distance from the origin \(O' \) to the mark at \(P' \), as measured in \(S' \), is precisely the desired coordinate \(x' \). Meanwhile, the same distance, as measured in \(S \), is \(x - vt \) (since \(x \) and \(vt \) are the horizontal distances from \(O \) to \(P' \) and \(O \) to \(O' \) at the instant \(t \), as measured in \(S \)). Thus according to the length-contraction formula (1.29),

\[
x - vt = \frac{x'}{\gamma}
\]

or

\[
x' = \gamma(x - vt)
\] (1.34)

This gives \(x' \) in terms of \(x \) and \(t \) and is the third of our four required equations. Notice that if \(v \) is small, \(\gamma \approx 1 \) and the relation (1.34) reduces to the first of the Galilean relations (1.31), as required.

Finally, to find \(t' \) in terms of \(x \), \(y \), \(z \), and \(t \), we use a simple trick. We can repeat the argument leading to (1.34) but with the roles of \(S \) and \(S' \) reversed. That is, we let the explosion burn a mark at the point \(P \) on a wall fixed in \(S \), and arguing as before, we find that

\[
x = \gamma(x' + vt')
\] (1.35)

[This can be obtained directly from (1.34) by exchanging \(x \), \(t \) with \(x' \), \(t' \) and \(v \) by \(-v \).] Equation (1.35) is not yet the desired result, but we can combine it with (1.34) to eliminate \(x' \) and find \(t' \). Inserting (1.34) in (1.35), we get

\[x = \gamma[\gamma(x - vt) + vt']\]

Solving for \(t' \) we find that

\[t' = \gamma t - \frac{\gamma^2 - 1}{\gamma v} x\]

or, after some algebra (Problem 1.37),

\[t' = \gamma \left(t - \frac{vx}{c^2} \right)\] (1.36)

This is the required expression for \(t' \) in terms of \(x \) and \(t \). When \(v/c \) is much smaller than 1, we can neglect the second term, and since \(\gamma \approx 1 \), we get \(t' \approx t \), in agreement with the Galilean transformation, as required.

Collecting together (1.33), (1.34), and (1.36), we obtain our required four equations.

\[
x' = \gamma(x - vt)
y' = y
z' = z
\]

(1.37)

\[t' = \gamma \left(t - \frac{vx}{c^2} \right)\]
These equations are called the Lorentz transformation, or Lorentz–Einstein transformation, in honor of the Dutch physicist Lorentz, who first proposed them, and Einstein, who first interpreted them correctly. The Lorentz transformation is the correct relativistic modification of the Galilean transformation (1.31).

If one wants to know x, y, z, t in terms of x', y', z', t', one can simply exchange the primed and unprimed variables and replace v by $-v$, in the now familiar way, to give

\[
\begin{align*}
x &= \gamma(x' - v't') \\
y &= y' \\
z &= z' \\
t &= \gamma\left(t' + \frac{vx'}{c^2}\right)
\end{align*}
\] (1.38)

These equations are sometimes called the inverse Lorentz transformation.

The Lorentz transformation expresses all the properties of space and time that follow from the postulates of relativity. From it, one can calculate all of the kinematic relations between measurements made in different inertial frames. In the next two sections we give some examples of such calculations.

1.12 Applications of the Lorentz Transformation

In this section we give three examples of problems that can easily be analyzed using the Lorentz transformation. In the first two we rederive two familiar results; in the third we analyze one of the many apparent paradoxes of relativity.

Example 1.4

Starting with the equations (1.37) of the Lorentz transformation, derive the length-contraction formula (1.29).

Notice that the length-contraction formula was used in our derivation of the Lorentz transformation. Thus this example will not give a new proof of length contraction; it will, rather, be a consistency check on the Lorentz transformation, to verify that it gives back the result from which it was derived.

Let us imagine, as before, measuring the length of a train (frame S') traveling at speed v relative to the ground (frame S). If the coordinates of the back and front of the train are x'_1 and x'_2, as measured in S', the train's proper length (its length as measured in its rest frame) is

\[l_0 = l' = x'_2 - x'_1 \] (1.39)

To find the length l as measured in S, we carefully position two observers on the ground to observe the coordinates x_1 and x_2 of the back and front of the train at some convenient time t. (These two measurements must, of course, be made at the same time t.) In terms of these coordinates, the length l as measured in S is (Fig. 1.10)

\[l = x_2 - x_1 \]