Homework 14

Due 11/7/11

1. This problem is designed to give you some practice with sines, cosines and complex sinusoids. A general real sinusoid can be expressed as

$$
\begin{equation*}
f(x)=A \sin (k x+\phi) . \tag{1}
\end{equation*}
$$

(a) Show that $f(x)$ can also be written as

$$
\begin{equation*}
f(x)=B \cos (k x)+C \sin (k x) \tag{2}
\end{equation*}
$$

and express B and C in terms of A and ϕ. Hint: You will have to use the trig. identity for the sine of a sum of angles. This and its cosine version are an identities you will use often in physics.

A general complex sinusoid can be written as

$$
\begin{equation*}
g(x)=A e^{i k x} \tag{3}
\end{equation*}
$$

where you know how to expand $e^{i k x}$ and $A=a+i b$ is allowed to be a complex number.
(b) By using the expanded form of A (above), write down the real and imaginary parts of $g(x)$ separately. You should notice that the real part (and the imaginary part) has the general form of a real sinusoid, given by Eq. (2).
(c) Show that the imaginary part is just the real part phase shifted by $-\pi / 2\left(-90^{\circ}\right)$. You expect the latter to be true because it is true of $e^{i k x}=\cos (k x)+i \sin (k x)$.
2. Problem 6.10

