Homework 13

Due 11/3/11

1. Consider a tennis ball ($m \simeq 0.05 \mathrm{~kg}$) moving at a speed of about $10 \mathrm{~m} / \mathrm{s}$. This is a good proxy for regular masses and speeds we normally experience. If you measure the momentum of the tennis ball to a precision of 0.001% (one part in a million), how much uncertainty will you introduce to its position?
2. First part of problem 5.28 , but do it relativistically this time. i.e. use the expression $E=\sqrt{p^{2} c^{2}+\left(m c^{2}\right)^{2}}$. We already did the second part involving phase velocity in class.
