Generalized Zeta Functions

Tian-Xiao He

Abstract

We provide a wide class of generalized zeta function in terms of the generalized Möbius functions and its properties.

AMS Subject Classification: 11A25, 05A10, 11M41, 11B75.

Key Words and Phrases: zeta function, Dirichlet series, Dirichlet convolution, Dirichlet product, multiplicative function, completely multiplicative function, Möbius inversion.

1 Introduction

For any integer $z \in \mathbb{C}$, a Fleck-type generalized Möbius function (*cf.* [3]) of order z can be defined by

$$\mu_z(n) := \Pi_p(-1)^{e_p(n)} \binom{z}{e_p(n)}$$
(1.1)

for any $n \in \mathbb{N}$, where p runs through all the prime divisors of n, and $e_p(n) = ord_p(n)$ denotes the highest power k of p such that p^k divides n. Obviously, $\mu_1(n) = \mu(n)$, $n \in \mathbb{N}$, is the classical Möbius function: $\mu(1) = 1$; if n is not square free then $\mu(n) = 0$; if n is square free and if q is the number of distinct primes dividing n, then $\mu(n) = (-1)^q$. In addition,

$$\mu_0 = \Pi_{p|n} (-1)^{e_p(n)} \begin{pmatrix} 0\\ e_p(n) \end{pmatrix} = \begin{cases} 1 & n = 1, \\ 0 & n > 1, \end{cases}$$

and

$$\mu_{-1} = \Pi_p(-1)^{e_p(n)} \binom{-1}{e_p(n)} = \Pi_{p|n} \frac{(e_p(n))!}{(e_p(n))!} = 1$$

It is easy to verify that for each complex number α , μ_{α} is a multiplicative function, but is not complete multiplicative except μ_0 , which is complete multiplicative.

The generalized zeta function, denoted by ξ_z , is defined accordingly by

$$\xi_z(s) = 1 / \sum_{n \ge 1} \frac{\mu_z(n)}{n^s},$$
(1.2)

where $z \in \mathbb{C}$. Hence, $\xi_1 = \xi$ the classical zeta function. And $\xi_0 = 1$. **Remark 1** $\xi_z(s)$ defined in (1.2) can be extended to \mathbb{C} . However, throughout this note, we do not consider the zero points of $\xi_1(s)$ in its domain, i.e., the points at which $\sum_{n\geq 1} \frac{\mu_1(n)}{n^s}$ diverges to infinite. In this note, we will show that the set of functions ξ_α ($\alpha \in \mathbb{C}$) forms

In this note, we will show that the set of functions ξ_{α} ($\alpha \in \mathbb{C}$) forms an Abelian group with the Dirichlet series multiplication followed by a number of applications.

2 Generalized zeta function group

We now recall the definition of the Dirichlet product (or convolution) of two arithmetic functions f and g (cf [1], [2]).

Definition 2.1 Given two arithmetic functions f and g, the Dirichlet (convolution) product f * g is again an arithmetic function which is defined by

$$(f * g)(n) := \sum_{d|n} f(d)g\left(\frac{n}{d}\right) = \sum_{d|n} f\left(\frac{n}{d}\right)g(d), \qquad (2.1)$$

where the summations are taken over all positive divisors d of n.

Definition 2.2 Denote

$$M := \{\mu_z : z \in \mathbb{C}\},\$$

where \mathbb{C} denotes the set of complex numbers. We call M is called the set of generalized Möbius functions of complex order. The set, denoted by N, of the corresponding nonzero generalized zeta functions of complex order is defined by

$$N := \{\xi_z : z \in \mathbb{C}\},\$$

where ξ_z are presented in (1.2).

From [2, 5], (M, *) forms an Abelian group with identity element μ_0 under the operation $*: M \times M \mapsto M$,

$$\mu_{\alpha} * \mu_{\beta} = \mu_{\alpha+\beta},$$

where $\alpha, \beta \in \mathbb{C}$.

Lemma 2.3 For any given $\alpha, \beta \in \mathbb{C}$, we define $\cdot : N \times N \mapsto N$ by

$$\xi_{\alpha} \cdot \xi_{\beta} = \xi_{\gamma}$$

for some $\gamma \in \mathbb{C}$ if

$$\frac{1}{\xi_{\alpha}} * \frac{1}{\xi_{\beta}} = \frac{1}{\xi_{\gamma}},$$

where * is the regular Dirichlet product of Dirichlet series (cf., for example, [8]). Thus, we have

$$\xi_{\alpha} \cdot \xi_{\beta} = \xi_{\alpha+\beta}.$$

Proof. By writing

$$1/\xi_{\alpha}(s) = \sum_{n \ge 1} \frac{\mu_{\alpha}(n)}{n^s}, \text{ and } 1/\xi_{\beta}(s) = \sum_{n \ge 1} \frac{\mu_{\beta}(n)}{n^s},$$

we obtain

$$1/(\xi_{\alpha}\xi_{\beta})(s) = \sum_{n\geq 1} \left(\sum_{d\mid n} \mu_{\alpha}(d)\mu_{\beta}\left(\frac{n}{d}\right) \right) / n^{s}$$
$$= \sum_{n\geq 1} \left(\mu_{\alpha} * \mu_{\beta} \right) / n^{s}$$
$$= \sum_{n\geq 1} \frac{\mu_{\alpha+\beta}}{n^{s}} = 1/\xi_{\alpha+\beta}(s).$$

We now ready to show (N, \cdot) is an Abelian group.

Theorem 2.4 Let \cdot be the operation define in Lemma 2.3. Then (N, \cdot) is an Abelian group with identity element $\xi_0 = 1$.

Proof. From Lemma 2.3, we see that N is closed respect to the operation \cdot . Moreover, for any α and $\beta \in \mathbb{C}$, we have

$$\xi_{\alpha} \cdot \xi_{\beta} = \xi_{\alpha+\beta} = \xi_{\beta} \cdot \xi_{\alpha}.$$

And for any α, β , and $\gamma, \in \mathbb{C}$,

$$\begin{aligned} (\xi_{\alpha} \cdot \xi_{\beta}) \cdot \xi_{\gamma} &= \xi_{\alpha+\beta} \cdot \xi_{\gamma} \\ &= 1/\sum_{n \ge 1} \left(\sum_{d \mid n} \mu_{\alpha+\beta}(d) \mu_{\gamma} \left(\frac{n}{d} \right) \right) / n^{s} \\ &= 1/\sum_{n \ge 1} \frac{\mu_{\alpha+\beta+\gamma}}{n^{s}} = \xi_{\alpha+\beta+\gamma}(s). \end{aligned}$$

Similarly, $\xi_{\alpha} \cdot (\xi_{\beta} \cdot \xi_{\gamma}) = \xi_{\alpha+\beta+\gamma}$. Thus,

$$(\xi_{\alpha} \cdot \xi_{\beta}) \cdot \xi_{\gamma} = \xi_{\alpha} \cdot (\xi_{\beta} \cdot \xi_{\gamma}).$$

It is also easy to check $\xi_{\alpha} \cdot 1 = 1 \cdot \xi_{\alpha} = \xi_{\alpha}$ and

$$\xi_{\alpha} \cdot \xi_{-\alpha} = \xi_{-\alpha} \cdot \xi_{\alpha} = 1.$$

Therefore, the theorem is proved.

From Theorem 2.4 and Equation (1.2) we have

Corollary 2.5 For all $\alpha \in \mathbb{Z}$

$$\xi_{\alpha}(s) = (\xi(s))^{\alpha},$$

where $(\xi(s))^{\alpha} := \xi(s)(\xi(s))^{\alpha-1}$.

Theorem 2.6 Group (M, *) and (N, \cdot) are isomorphic.

Proof. Mapping $\phi: M \mapsto N$ is defined by

$$\phi(\mu_{\alpha}) := \xi_{\alpha} = 1 / \sum_{n \ge 1} \frac{\mu_{\alpha}(n)}{n^s},$$

where $\alpha \in \mathbb{C}$. It is easy to verify that the mapping is one-to-one and onto [[a subspace of M in which $\sum_{n\geq 1} \mu_{\alpha}(n)/n^s$ is not divergent]]. In addition, for any $\alpha, \beta \in \mathbb{C}$,

$$\phi(\mu_{\alpha} * \mu_{\beta}) = \phi(\mu_{\alpha+\beta}) = \xi_{\alpha+\beta}$$
$$= \xi_{\alpha} \cdot \xi_{\beta} = \phi(\mu_{\alpha}) \cdot \phi(\mu_{\beta})$$

This completes the proof.

3 Some results from generalized zeta function group

A series $\sum_{n\geq 1} a_n n^{-s}$ is called an arithmetic Dirichlet series if all of its coefficients $a_n = a(n)$ are arithmetic functions.

Theorem 3.1 (Generalized zeta inversion formulae) For all $\alpha \in \mathbb{C}$ and Dirichlet series f and g,

$$f = \xi_{\alpha}g \Leftrightarrow g = \xi_{-\alpha}f. \tag{3.1}$$

Moreover, if both $f = \sum_{n \ge 1} f_n n^{-s}$ and $g = \sum_{n \ge 1} g_n n^{-s}$ are arithmetic Dirichlet series, then for any $n \in \mathbb{N}$

$$f(n) = \sum_{d|n} \mu_{\alpha}\left(\frac{n}{d}\right) g(d) \Leftrightarrow g(n) = \sum_{d|n} \mu_{-\alpha}\left(\frac{n}{d}\right) f(d).$$
(3.2)

Proposition 3.2 For all $n \in \mathbb{N}$ and $\alpha \in \mathbb{C}$,

$$\sum_{d|n} \mu_{\alpha-1}(d) = \mu_{\alpha}(n). \tag{3.3}$$

Proof. From Corollary 2.5

$$\sum_{n \ge 1} \frac{\mu_{\alpha}(n)}{n^{s}} = \frac{1}{\xi_{\alpha}(s)} = \frac{1}{\xi_{\alpha-1}(s)} \cdot \sum_{n \ge 1} \frac{\mu_{-1}(n)}{n^{s}}$$
$$= \sum_{n \ge 1} \frac{\mu_{\alpha-1}(n)}{n^{s}} \cdot \sum_{n \ge 1} \frac{\mu_{-1}(n)}{n^{s}}$$
$$= \sum_{n \ge 1} \sum_{d|n} \mu_{\alpha-1}(d) \mu_{-1}\left(\frac{n}{d}\right) / n^{s},$$

which leads (3.3) by applying the Dirichlet series multiplication and noting that $\mu_{-1} \equiv 1$.

Proposition 3.3 Let $f = \sum_{n\geq 1} c_n n^{-s}$, and let all c_n are completely multiplicative functions. For any fixed positive integer α ,

$$f^{\alpha-1} \sum_{n \ge 1} \frac{\mu_{\alpha}(n)c_n}{n^{-s}} = \sum_{n \ge 1} \frac{\mu_0(n)c_n}{n^{-s}}.$$
 (3.4)

Proof. This follows easily from Proposition 3.2 and mathematical induction on α . In fact, first we have

$$f\sum_{n\geq 1} \frac{\mu_{\alpha}(n)c_n}{n^{-s}} = \sum_{n\geq 1} \frac{\left((\mu_{\alpha}c) * c\right)(n)}{n^{-s}}$$
$$= \sum_{n\geq 1} \frac{c(n)\sum_{d\mid n}\mu_{\alpha}(d)}{n^{-s}}$$
$$= \sum_{n\geq 1} \frac{c(n)\mu_{\alpha-1}(n)}{n^{-s}}.$$

Secondly, using mathematical induction on α we obtain (3.4).

It is known (*cf.*, for examples, [4] and [6]) that for any fixed integer $\alpha \geq 1$

$$\xi_1^{\alpha}(s) = \left(\sum_{n \ge 1} \mu(n) n^{-s}\right)^{\alpha} = \sum_{n \ge 1} r_{\alpha}(n) n^{-s}, \tag{3.5}$$

where

$$r_{\alpha}(n) = \sum_{n_1 n_2 \cdots n_{\alpha} = n} 1$$

is the number of ways that n can be written as a product of α fixed factors, so that $r_{\alpha}(n)$ is clearly a multiplicative function of n. In particular, $r_2(n)$ denotes the number of positive divisors of n.

Theorem 3.4 (Characteristic of generalized Möbius functions) For any fixed integer $\alpha \geq 1$, the inverse of μ_{α} in the group (M, *) is r_{α} ; or equivalently, $r_{\alpha} = \mu_{-\alpha}$, i.e., for all integers $n \geq 1$

$$(r_{\alpha} * \mu_{\alpha})(n) = \sum_{d|n} r_{\alpha}(d)\mu_{\alpha}(n/d) = \delta_{n,1}, \qquad (3.6)$$

where $\delta_{n,1} = 1$ if n = 1 and 0 otherwise.

Proof. Multiplying $\xi_1^{\alpha}(s)$ shown as in (3.5) with

$$\frac{1}{\xi_{\alpha}(s)} = \frac{1}{\xi_{1}^{\alpha}(s)} = \sum_{n \ge 1} \frac{\mu_{\alpha}(n)}{n^{s}}$$

yields

$$\sum_{n \ge 1} \frac{(r_{\alpha} * \mu_{\alpha})(n)}{n^s} = 1,$$

which leads $r_{\alpha}(1)\mu_{\alpha}(1) = 1$ and

$$(r_{\alpha} * \mu_{\alpha})(n) = \sum_{d|n} r_{\alpha}(d)\mu_{\alpha}(n/d) = 0$$

for $n \ge 2$, completing the proof.

Denote

$$F_{\alpha}(s) = \sum_{n \ge 1} r_{\alpha}(n) n^{-s}.$$
(3.7)

Then we obtain

$$F_{\alpha}(s)\xi_{1-\alpha}(s) = \sum_{n\geq 1} \sum_{d|n} r_{\alpha}(d)\mu_{1-\alpha}\left(\frac{n}{d}\right)/n^{s} = \xi(s) \text{ and}$$

$$F_{\alpha}(s)\xi_{-\alpha}(s) = (\xi_{1})^{\alpha}(\xi_{1})^{-\alpha} = \xi_{1}^{0} = \xi_{0}(s) = 1,$$

i.e., identities (3.6) and

$$\sum_{d|n} r_{\alpha}(d)\mu_{1-\alpha}\left(\frac{n}{d}\right) = 1.$$

In particular, for $r_2 = \sum_{d|n} 1$, the number of positive divisors of n, from $\mu_{-2}(n) = r_2(n)$ we obtain

$$F_2(s)\xi_{-1}(s) = 1$$
 and $F_2(s)\xi_{-2}(s) = \xi_0(s) = 1$,

i.e.,

$$\sum_{d|n} r_2(d)\mu\left(\frac{n}{d}\right) = 1 \quad and \quad \sum_{d|n} r_2(d)\mu_2\left(\frac{n}{d}\right) = \delta_{n,1}.$$

References

- Apostol, T., Möbius functions of rank k, Pacific J. Math., 32(1970), 21-27.
- [2] Brown, T.C., Hsu, L.C., Wang, J., and Shiue, P.J.S., On a certain kind of generalized number-theoretical Möbius function, Math. Sci., 25(2000), 72-77.
- [3] Fleck, A., Über gewisse allgemeine zahlentheoretische Funktionen, insbesondere eine der Funktion $\mu(n)$ verwandte Funktion $\mu_k(m)$, S.-B. Berlin. Math. Ges 15, 1916, 3-8.
- [4] Hardy, G. H. and Wright, E. M., An Introduction to the Theory of Numbers, fifth edition, Oxford Science Publications, 1979.

- [5] He, T. X., Hsu, L. C., and Shiue, P. J.-S., On Generalised Möbius Inversion Formulas, Bulletin AMS, (2006),
- [6] Knopfmacher, J., Abstract Analytic Number Theory, North-Holland Publishing Co., Amsterdam, 1975.
- [7] Sándor, J. and Bege, A., The Möbius Function: Generalizations and Extensions, Adv. Stud. Contemp. Math. (Kyungshang), 6(2003), No.2, 77-128.
- [8] H. S. Wilf, Generatingfunctionology, Acad. Press, New York, 1990.