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Abstract

We provide a wide class of generalized zeta function in terms of
the generalized Möbius functions and its properties.
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1 Introduction

For any integer z ∈ C, a Fleck-type generalized Möbius function (cf.
[3]) of order z can be defined by

µz(n) := Πp(−1)ep(n)

(
z

ep(n)

)
(1.1)

for any n ∈ N, where p runs through all the prime divisors of n, and
ep(n) = ordp(n) denotes the highest power k of p such that pk divides
n. Obviously, µ1(n) = µ(n), n ∈ N, is the classical Möbius function:
µ(1) = 1; if n is not square free then µ(n) = 0; if n is square free and
if q is the number of distinct primes dividing n, then µ(n) = (−1)q. In
addition,

µ0 = Πp|n(−1)ep(n)

(
0

ep(n)

)
=

{
1 n = 1,
0 n > 1,

and
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µ−1 = Πp(−1)ep(n)

(
−1

ep(n)

)
= Πp|n

(ep(n))!

(ep(n))!
= 1.

It is easy to verify that for each complex number α, µα is a multiplicative
function, but is not complete multiplicative except µ0, which is complete
multiplicative.

The generalized zeta function, denoted by ξz, is defined accordingly
by

ξz(s) = 1/
∑
n≥1

µz(n)

ns
, (1.2)

where z ∈ C. Hence, ξ1 = ξ the classical zeta function. And ξ0 = 1.
Remark 1 ξz(s) defined in (1.2) can be extended to C. However,
throughout this note, we do not consider the zero points of ξ1(s) in

its domain, i.e., the points at which
∑

n≥1
µ1(n)
ns

diverges to infinite.
In this note, we will show that the set of functions ξα (α ∈ C) forms

an Abelian group with the Dirichlet series multiplication followed by a
number of applications.

2 Generalized zeta function group

We now recall the definition of the Dirichlet product (or convolution) of
two arithmetic functions f and g (cf [1], [2]).

Definition 2.1 Given two arithmetic functions f and g, the Dirichlet
(convolution) product f ∗ g is again an arithmetic function which is
defined by

(f ∗ g)(n) :=
∑
d|n

f(d)g
(n
d

)
=
∑
d|n

f
(n
d

)
g(d), (2.1)

where the summations are taken over all positive divisors d of n.

Definition 2.2 Denote

M := {µz : z ∈ C},

where C denotes the set of complex numbers. We call M is called the set
of generalized Möbius functions of complex order. The set, denoted by
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N , of the corresponding nonzero generalized zeta functions of complex
order is defined by

N := {ξz : z ∈ C},
where ξz are presented in (1.2).

From [2, 5], (M, ∗) forms an Abelian group with identity element µ0

under the operation ∗ : M ×M 7→M ,

µα ∗ µβ = µα+β,

where α, β ∈ C.

Lemma 2.3 For any given α, β ∈ C, we define · : N ×N 7→ N by

ξα · ξβ = ξγ

for some γ ∈ C if

1

ξα
∗ 1

ξβ
=

1

ξγ
,

where ∗ is the regular Dirichlet product of Dirichlet series (cf., for ex-
ample, [8]). Thus, we have

ξα · ξβ = ξα+β.

Proof. By writing

1/ξα(s) =
∑
n≥1

µα(n)

ns
, and 1/ξβ(s) =

∑
n≥1

µβ(n)

ns
,

we obtain

1/(ξαξβ)(s) =
∑
n≥1

∑
d|n

µα(d)µβ

(n
d

) /ns

=
∑
n≥1

(µα ∗ µβ) /ns

=
∑
n≥1

µα+β

ns
= 1/ξα+β(s).
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We now ready to show (N, ·) is an Abelian group.

Theorem 2.4 Let · be the operation define in Lemma 2.3. Then (N, ·)
is an Abelian group with identity element ξ0 = 1.

Proof. From Lemma 2.3, we see that N is closed respect to the operation
·. Moreover, for any α and β,∈ C, we have

ξα · ξβ = ξα+β = ξβ · ξα.

And for any α, β, and γ,∈ C,

(ξα · ξβ) · ξγ = ξα+β · ξγ

= 1/
∑
n≥1

∑
d|n

µα+β(d)µγ

(n
d

) /ns

= 1/
∑
n≥1

µα+β+γ

ns
= ξα+β+γ(s).

Similarly, ξα · (ξβ · ξγ) = ξα+β+γ. Thus,

(ξα · ξβ) · ξγ = ξα · (ξβ · ξγ).

It is also easy to check ξα · 1 = 1 · ξα = ξα and

ξα · ξ−α = ξ−α · ξα = 1.

Therefore, the theorem is proved.

From Theorem 2.4 and Equation (1.2) we have

Corollary 2.5 For all α ∈ Z

ξα(s) = (ξ(s))α,

where (ξ(s))α := ξ(s)(ξ(s))α−1.

Theorem 2.6 Group (M, ∗) and (N, ·) are isomorphic.
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Proof. Mapping φ : M 7→ N is defined by

φ(µα) := ξα = 1/
∑
n≥1

µα(n)

ns
,

where α ∈ C. It is easy to verify that the mapping is one-to-one and
onto [[a subspace of M in which

∑
n≥1 µα(n)/ns is not divergent]]. In

addition, for any α, β ∈ C,

φ(µα ∗ µβ) = φ(µα+β) = ξα+β

= ξα · ξβ = φ(µα) · φ(µβ).

This completes the proof.

3 Some results from generalized zeta func-

tion group

A series
∑

n≥1 ann
−s is called an arithmetic Dirichlet series if all of its

coefficients an = a(n) are arithmetic functions.

Theorem 3.1 (Generalized zeta inversion formulae) For all α ∈ C and
Dirichlet series f and g,

f = ξαg ⇔ g = ξ−αf. (3.1)

Moreover, if both f =
∑

n≥1 fnn
−s and g =

∑
n≥1 gnn

−s are arithmetic
Dirichlet series, then for any n ∈ N

f(n) =
∑
d|n

µα

(n
d

)
g(d)⇔ g(n) =

∑
d|n

µ−α

(n
d

)
f(d). (3.2)

Proposition 3.2 For all n ∈ N and α ∈ C,∑
d|n

µα−1(d) = µα(n). (3.3)
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Proof. From Corollary 2.5

∑
n≥1

µα(n)

ns
=

1

ξα(s)
=

1

ξα−1(s)
·
∑
n≥1

µ−1(n)

ns

=
∑
n≥1

µα−1(n)

ns
·
∑
n≥1

µ−1(n)

ns

=
∑
n≥1

∑
d|n

µα−1(d)µ−1

(n
d

)
/ns,

which leads (3.3) by applying the Dirichlet series multiplication and
noting that µ−1 ≡ 1.

Proposition 3.3 Let f =
∑

n≥1 cnn
−s, and let all cn are completely

multiplicative functions. For any fixed positive integer α,

fα−1
∑
n≥1

µα(n)cn
n−s

=
∑
n≥1

µ0(n)cn
n−s

. (3.4)

Proof. This follows easily from Proposition 3.2 and mathematical in-
duction on α. In fact, first we have

f
∑
n≥1

µα(n)cn
n−s

=
∑
n≥1

((µαc) ∗ c)(n)

n−s

=
∑
n≥1

c(n)
∑

d|n µα(d)

n−s

=
∑
n≥1

c(n)µα−1(n)

n−s
.

Secondly, using mathematical induction on α we obtain (3.4).

It is known (cf., for examples, [4] and [6]) that for any fixed integer
α ≥ 1
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ξα1 (s) =

(∑
n≥1

µ(n)n−s

)α

=
∑
n≥1

rα(n)n−s, (3.5)

where

rα(n) =
∑

n1n2···nα=n

1

is the number of ways that n can be written as a product of α fixed fac-
tors, so that rα(n) is clearly a multiplicative function of n. In particular,
r2(n) denotes the number of positive divisors of n.

Theorem 3.4 (Characteristic of generalized Möbius functions) For any
fixed integer α ≥ 1, the inverse of µα in the group (M, ∗) is rα; or
equivalently, rα = µ−α, i.e., for all integers n ≥ 1

(rα ∗ µα)(n) =
∑
d|n

rα(d)µα(n/d) = δn,1, (3.6)

where δn,1 = 1 if n = 1 and 0 otherwise.

Proof. Multiplying ξα1 (s) shown as in (3.5) with

1

ξα(s)
=

1

ξα1 (s)
=
∑
n≥1

µα(n)

ns

yields

∑
n≥1

(rα ∗ µα)(n)

ns
= 1,

which leads rα(1)µα(1) = 1 and

(rα ∗ µα)(n) =
∑
d|n

rα(d)µα(n/d) = 0

for n ≥ 2, completing the proof.

Denote
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Fα(s) =
∑
n≥1

rα(n)n−s. (3.7)

Then we obtain

Fα(s)ξ1−α(s) =
∑
n≥1

∑
d|n

rα(d)µ1−α

(n
d

)
/ns = ξ(s) and

Fα(s)ξ−α(s) = (ξ1)
α(ξ1)

−α = ξ0
1 = ξ0(s) = 1,

i.e., identities (3.6) and∑
d|n

rα(d)µ1−α

(n
d

)
= 1.

In particular, for r2 =
∑

d|n 1, the number of positive divisors of n, from

µ−2(n) = r2(n) we obtain

F2(s)ξ−1(s) = 1 and F2(s)ξ−2(s) = ξ0(s) = 1,

i.e., ∑
d|n

r2(d)µ
(n
d

)
= 1 and

∑
d|n

r2(d)µ2

(n
d

)
= δn,1.
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