Generalized Zeta Functions

Tian-Xiao He

Abstract

We provide a wide class of generalized zeta function in terms of the generalized Möbius functions and its properties.

AMS Subject Classification: 11A25, 05A10, 11M41, 11B75.

Key Words and Phrases: zeta function, Dirichlet series, Dirichlet convolution, Dirichlet product, multiplicative function, completely multiplicative function, Möbius inversion.

1 Introduction

For any integer $z \in \mathbb{C}$, a Fleck-type generalized Möbius function (cf. [3]) of order z can be defined by

$$
\begin{equation*}
\mu_{z}(n):=\Pi_{p}(-1)^{e_{p}(n)}\binom{z}{e_{p}(n)} \tag{1.1}
\end{equation*}
$$

for any $n \in \mathbb{N}$, where p runs through all the prime divisors of n, and $e_{p}(n)=\operatorname{ord}_{p}(n)$ denotes the highest power k of p such that p^{k} divides n. Obviously, $\mu_{1}(n)=\mu(n), n \in \mathbb{N}$, is the classical Möbius function: $\mu(1)=1$; if n is not square free then $\mu(n)=0$; if n is square free and if q is the number of distinct primes dividing n, then $\mu(n)=(-1)^{q}$. In addition,

$$
\mu_{0}=\Pi_{p \mid n}(-1)^{e_{p}(n)}\binom{0}{e_{p}(n)}= \begin{cases}1 & n=1, \\ 0 & n>1\end{cases}
$$

and

$$
\mu_{-1}=\Pi_{p}(-1)^{e_{p}(n)}\binom{-1}{e_{p}(n)}=\Pi_{p \mid n} \frac{\left(e_{p}(n)\right)!}{\left(e_{p}(n)\right)!}=1 .
$$

It is easy to verify that for each complex number α, μ_{α} is a multiplicative function, but is not complete multiplicative except μ_{0}, which is complete multiplicative.

The generalized zeta function, denoted by ξ_{z}, is defined accordingly by

$$
\begin{equation*}
\xi_{z}(s)=1 / \sum_{n \geq 1} \frac{\mu_{z}(n)}{n^{s}} \tag{1.2}
\end{equation*}
$$

where $z \in \mathbb{C}$. Hence, $\xi_{1}=\xi$ the classical zeta function. And $\xi_{0}=1$. Remark $1 \xi_{z}(s)$ defined in (1.2) can be extended to \mathbb{C}. However, throughout this note, we do not consider the zero points of $\xi_{1}(s)$ in its domain, i.e., the points at which $\sum_{n \geq 1} \frac{\mu_{1}(n)}{n^{s}}$ diverges to infinite.

In this note, we will show that the set of functions $\xi_{\alpha}(\alpha \in \mathbb{C})$ forms an Abelian group with the Dirichlet series multiplication followed by a number of applications.

2 Generalized zeta function group

We now recall the definition of the Dirichlet product (or convolution) of two arithmetic functions f and $g(c f[1],[2])$.

Definition 2.1 Given two arithmetic functions f and g, the Dirichlet (convolution) product $f * g$ is again an arithmetic function which is defined by

$$
\begin{equation*}
(f * g)(n):=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right)=\sum_{d \mid n} f\left(\frac{n}{d}\right) g(d), \tag{2.1}
\end{equation*}
$$

where the summations are taken over all positive divisors d of n.
Definition 2.2 Denote

$$
M:=\left\{\mu_{z}: z \in \mathbb{C}\right\}
$$

where \mathbb{C} denotes the set of complex numbers. We call M is called the set of generalized Möbius functions of complex order. The set, denoted by
N, of the corresponding nonzero generalized zeta functions of complex order is defined by

$$
N:=\left\{\xi_{z}: z \in \mathbb{C}\right\}
$$

where ξ_{z} are presented in (1.2).
From $[2,5],(M, *)$ forms an Abelian group with identity element μ_{0} under the operation $*: M \times M \mapsto M$,

$$
\mu_{\alpha} * \mu_{\beta}=\mu_{\alpha+\beta}
$$

where $\alpha, \beta \in \mathbb{C}$.
Lemma 2.3 For any given $\alpha, \beta \in \mathbb{C}$, we define • : $N \times N \mapsto N$ by

$$
\xi_{\alpha} \cdot \xi_{\beta}=\xi_{\gamma}
$$

for some $\gamma \in \mathbb{C}$ if

$$
\frac{1}{\xi_{\alpha}} * \frac{1}{\xi_{\beta}}=\frac{1}{\xi_{\gamma}}
$$

where $*$ is the regular Dirichlet product of Dirichlet series (cf., for example, [8]). Thus, we have

$$
\xi_{\alpha} \cdot \xi_{\beta}=\xi_{\alpha+\beta}
$$

Proof. By writing

$$
1 / \xi_{\alpha}(s)=\sum_{n \geq 1} \frac{\mu_{\alpha}(n)}{n^{s}}, \text { and } 1 / \xi_{\beta}(s)=\sum_{n \geq 1} \frac{\mu_{\beta}(n)}{n^{s}},
$$

we obtain

$$
\begin{aligned}
1 /\left(\xi_{\alpha} \xi_{\beta}\right)(s) & =\sum_{n \geq 1}\left(\sum_{d \mid n} \mu_{\alpha}(d) \mu_{\beta}\left(\frac{n}{d}\right)\right) / n^{s} \\
& =\sum_{n \geq 1}\left(\mu_{\alpha} * \mu_{\beta}\right) / n^{s} \\
& =\sum_{n \geq 1} \frac{\mu_{\alpha+\beta}}{n^{s}}=1 / \xi_{\alpha+\beta}(s)
\end{aligned}
$$

We now ready to show (N, \cdot) is an Abelian group.
Theorem 2.4 Let • be the operation define in Lemma 2.3. Then (N, \cdot) is an Abelian group with identity element $\xi_{0}=1$.

Proof. From Lemma 2.3, we see that N is closed respect to the operation \because Moreover, for any α and $\beta, \in \mathbb{C}$, we have

$$
\xi_{\alpha} \cdot \xi_{\beta}=\xi_{\alpha+\beta}=\xi_{\beta} \cdot \xi_{\alpha}
$$

And for any α, β, and $\gamma, \in \mathbb{C}$,

$$
\begin{aligned}
\left(\xi_{\alpha} \cdot \xi_{\beta}\right) \cdot \xi_{\gamma} & =\xi_{\alpha+\beta} \cdot \xi_{\gamma} \\
& =1 / \sum_{n \geq 1}\left(\sum_{d \mid n} \mu_{\alpha+\beta}(d) \mu_{\gamma}\left(\frac{n}{d}\right)\right) / n^{s} \\
& =1 / \sum_{n \geq 1} \frac{\mu_{\alpha+\beta+\gamma}}{n^{s}}=\xi_{\alpha+\beta+\gamma}(s) .
\end{aligned}
$$

Similarly, $\xi_{\alpha} \cdot\left(\xi_{\beta} \cdot \xi_{\gamma}\right)=\xi_{\alpha+\beta+\gamma}$. Thus,

$$
\left(\xi_{\alpha} \cdot \xi_{\beta}\right) \cdot \xi_{\gamma}=\xi_{\alpha} \cdot\left(\xi_{\beta} \cdot \xi_{\gamma}\right)
$$

It is also easy to check $\xi_{\alpha} \cdot 1=1 \cdot \xi_{\alpha}=\xi_{\alpha}$ and

$$
\xi_{\alpha} \cdot \xi_{-\alpha}=\xi_{-\alpha} \cdot \xi_{\alpha}=1
$$

Therefore, the theorem is proved.

From Theorem 2.4 and Equation (1.2) we have
Corollary 2.5 For all $\alpha \in \mathbb{Z}$

$$
\xi_{\alpha}(s)=(\xi(s))^{\alpha}
$$

where $(\xi(s))^{\alpha}:=\xi(s)(\xi(s))^{\alpha-1}$.
Theorem 2.6 Group $(M, *)$ and (N, \cdot) are isomorphic.

Proof. Mapping $\phi: M \mapsto N$ is defined by

$$
\phi\left(\mu_{\alpha}\right):=\xi_{\alpha}=1 / \sum_{n \geq 1} \frac{\mu_{\alpha}(n)}{n^{s}}
$$

where $\alpha \in \mathbb{C}$. It is easy to verify that the mapping is one-to-one and onto [[a subspace of M in which $\sum_{n \geq 1} \mu_{\alpha}(n) / n^{s}$ is not divergent]]. In addition, for any $\alpha, \beta \in \mathbb{C}$,

$$
\begin{aligned}
\phi\left(\mu_{\alpha} * \mu_{\beta}\right) & =\phi\left(\mu_{\alpha+\beta}\right)=\xi_{\alpha+\beta} \\
& =\xi_{\alpha} \cdot \xi_{\beta}=\phi\left(\mu_{\alpha}\right) \cdot \phi\left(\mu_{\beta}\right) .
\end{aligned}
$$

This completes the proof.

3 Some results from generalized zeta function group

A series $\sum_{n \geq 1} a_{n} n^{-s}$ is called an arithmetic Dirichlet series if all of its coefficients $a_{n}=a(n)$ are arithmetic functions.

Theorem 3.1 (Generalized zeta inversion formulae) For all $\alpha \in \mathbb{C}$ and Dirichlet series f and g,

$$
\begin{equation*}
f=\xi_{\alpha} g \Leftrightarrow g=\xi_{-\alpha} f . \tag{3.1}
\end{equation*}
$$

Moreover, if both $f=\sum_{n \geq 1} f_{n} n^{-s}$ and $g=\sum_{n \geq 1} g_{n} n^{-s}$ are arithmetic Dirichlet series, then for any $n \in \mathbb{N}$

$$
\begin{equation*}
f(n)=\sum_{d \mid n} \mu_{\alpha}\left(\frac{n}{d}\right) g(d) \Leftrightarrow g(n)=\sum_{d \mid n} \mu_{-\alpha}\left(\frac{n}{d}\right) f(d) . \tag{3.2}
\end{equation*}
$$

Proposition 3.2 For all $n \in \mathbb{N}$ and $\alpha \in \mathbb{C}$,

$$
\begin{equation*}
\sum_{d \mid n} \mu_{\alpha-1}(d)=\mu_{\alpha}(n) \tag{3.3}
\end{equation*}
$$

Proof. From Corollary 2.5

$$
\begin{aligned}
\sum_{n \geq 1} \frac{\mu_{\alpha}(n)}{n^{s}} & =\frac{1}{\xi_{\alpha}(s)}=\frac{1}{\xi_{\alpha-1}(s)} \cdot \sum_{n \geq 1} \frac{\mu_{-1}(n)}{n^{s}} \\
& =\sum_{n \geq 1} \frac{\mu_{\alpha-1}(n)}{n^{s}} \cdot \sum_{n \geq 1} \frac{\mu_{-1}(n)}{n^{s}} \\
& =\sum_{n \geq 1} \sum_{d \mid n} \mu_{\alpha-1}(d) \mu_{-1}\left(\frac{n}{d}\right) / n^{s},
\end{aligned}
$$

which leads (3.3) by applying the Dirichlet series multiplication and noting that $\mu_{-1} \equiv 1$.

Proposition 3.3 Let $f=\sum_{n \geq 1} c_{n} n^{-s}$, and let all c_{n} are completely multiplicative functions. For any fixed positive integer α,

$$
\begin{equation*}
f^{\alpha-1} \sum_{n \geq 1} \frac{\mu_{\alpha}(n) c_{n}}{n^{-s}}=\sum_{n \geq 1} \frac{\mu_{0}(n) c_{n}}{n^{-s}} \tag{3.4}
\end{equation*}
$$

Proof. This follows easily from Proposition 3.2 and mathematical induction on α. In fact, first we have

$$
\begin{aligned}
f \sum_{n \geq 1} \frac{\mu_{\alpha}(n) c_{n}}{n^{-s}} & =\sum_{n \geq 1} \frac{\left(\left(\mu_{\alpha} c\right) * c\right)(n)}{n^{-s}} \\
& =\sum_{n \geq 1} \frac{c(n) \sum_{d \mid n} \mu_{\alpha}(d)}{n^{-s}} \\
& =\sum_{n \geq 1} \frac{c(n) \mu_{\alpha-1}(n)}{n^{-s}} .
\end{aligned}
$$

Secondly, using mathematical induction on α we obtain (3.4).

It is known (cf., for examples, [4] and [6]) that for any fixed integer $\alpha \geq 1$

$$
\begin{equation*}
\xi_{1}^{\alpha}(s)=\left(\sum_{n \geq 1} \mu(n) n^{-s}\right)^{\alpha}=\sum_{n \geq 1} r_{\alpha}(n) n^{-s}, \tag{3.5}
\end{equation*}
$$

where

$$
r_{\alpha}(n)=\sum_{n_{1} n_{2} \cdots n_{\alpha}=n} 1
$$

is the number of ways that n can be written as a product of α fixed factors, so that $r_{\alpha}(n)$ is clearly a multiplicative function of n. In particular, $r_{2}(n)$ denotes the number of positive divisors of n.

Theorem 3.4 (Characteristic of generalized Möbius functions) For any fixed integer $\alpha \geq 1$, the inverse of μ_{α} in the group $(M, *)$ is r_{α}; or equivalently, $r_{\alpha}=\mu_{-\alpha}$, i.e., for all integers $n \geq 1$

$$
\begin{equation*}
\left(r_{\alpha} * \mu_{\alpha}\right)(n)=\sum_{d \mid n} r_{\alpha}(d) \mu_{\alpha}(n / d)=\delta_{n, 1} \tag{3.6}
\end{equation*}
$$

where $\delta_{n, 1}=1$ if $n=1$ and 0 otherwise.
Proof. Multiplying $\xi_{1}^{\alpha}(s)$ shown as in (3.5) with

$$
\frac{1}{\xi_{\alpha}(s)}=\frac{1}{\xi_{1}^{\alpha}(s)}=\sum_{n \geq 1} \frac{\mu_{\alpha}(n)}{n^{s}}
$$

yields

$$
\sum_{n \geq 1} \frac{\left(r_{\alpha} * \mu_{\alpha}\right)(n)}{n^{s}}=1
$$

which leads $r_{\alpha}(1) \mu_{\alpha}(1)=1$ and

$$
\left(r_{\alpha} * \mu_{\alpha}\right)(n)=\sum_{d \mid n} r_{\alpha}(d) \mu_{\alpha}(n / d)=0
$$

for $n \geq 2$, completing the proof.

Denote

$$
\begin{equation*}
F_{\alpha}(s)=\sum_{n \geq 1} r_{\alpha}(n) n^{-s} \tag{3.7}
\end{equation*}
$$

Then we obtain

$$
\begin{aligned}
F_{\alpha}(s) \xi_{1-\alpha}(s) & =\sum_{n \geq 1} \sum_{d \mid n} r_{\alpha}(d) \mu_{1-\alpha}\left(\frac{n}{d}\right) / n^{s}=\xi(s) \text { and } \\
F_{\alpha}(s) \xi_{-\alpha}(s) & =\left(\xi_{1}\right)^{\alpha}\left(\xi_{1}\right)^{-\alpha}=\xi_{1}^{0}=\xi_{0}(s)=1
\end{aligned}
$$

i.e., identities (3.6) and

$$
\sum_{d \mid n} r_{\alpha}(d) \mu_{1-\alpha}\left(\frac{n}{d}\right)=1
$$

In particular, for $r_{2}=\sum_{d \mid n} 1$, the number of positive divisors of n, from $\mu_{-2}(n)=r_{2}(n)$ we obtain

$$
F_{2}(s) \xi_{-1}(s)=1 \quad \text { and } \quad F_{2}(s) \xi_{-2}(s)=\xi_{0}(s)=1
$$

i.e.,

$$
\sum_{d \mid n} r_{2}(d) \mu\left(\frac{n}{d}\right)=1 \quad \text { and } \quad \sum_{d \mid n} r_{2}(d) \mu_{2}\left(\frac{n}{d}\right)=\delta_{n, 1} .
$$

References

[1] Apostol, T., Möbius functions of rank k, Pacific J. Math., 32(1970), 21-27.
[2] Brown, T.C., Hsu, L.C., Wang, J., and Shiue, P.J.S., On a certain kind of generalized number-theoretical Möbius function, Math. Sci., 25(2000), 72-77.
[3] Fleck, A., Über gewisse allgemeine zahlentheoretische Funktionen, insbesondere eine der Funktion $\mu(n)$ verwandte Funktion $\mu_{k}(m)$, S.-B. Berlin. Math. Ges 15, 1916, 3-8.
[4] Hardy, G. H. and Wright, E. M., An Introduction to the Theory of Numbers, fifth edition, Oxford Science Publications, 1979.
[5] He, T. X., Hsu, L. C., and Shiue, P. J.-S., On Generalised Möbius Inversion Formulas, Bulletin AMS, (2006),
[6] Knopfmacher, J., Abstract Analytic Number Theory, North-Holland Publishing Co., Amsterdam, 1975.
[7] Sándor, J. and Bege, A., The Möbius Function: Generalizations and Extensions, Adv. Stud. Contemp. Math. (Kyungshang), 6(2003), No.2, 77-128.
[8] H. S. Wilf, Generatingfunctionology, Acad. Press, New York, 1990.

