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Abstract

We provide a wide class of generalized zeta function in terms of
the generalized Mobius functions and its properties.
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1 Introduction

For any integer z € C, a Fleck-type generalized M&bius function (cf.
[3]) of order z can be defined by

(n) =T (—1)™ ([ © ) 1.1
i) s= 1) (L)
for any n € N, where p runs through all the prime divisors of n, and
ep(n) = ord,(n) denotes the highest power k of p such that p* divides
n. Obviously, ui(n) = wu(n), n € N, is the classical Mébius function:
(1) = 1; if n is not square free then u(n) = 0; if n is square free and
if ¢ is the number of distinct primes dividing n, then p(n) = (—1)%. In
addition,

0 1 n=1
— _1\er(n) — )
Ho Hp\n( 1) (ep(n)) { 0 n> 17

and
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It is easy to verify that for each complex number «, p, is a multiplicative
function, but is not complete multiplicative except po, which is complete
multiplicative.

The generalized zeta function, denoted by &, is defined accordingly
by

el =173 =) (1.2)

n
n>1

where z € C. Hence, & = £ the classical zeta function. And &, = 1.
Remark 1 .(s) defined in (1.2) can be extended to C. However,
throughout this note, we do not consider the zero points of & (s) in
its domain, i.e., the points at which >~ _ ;L(f) diverges to infinite.

In this note, we will show that the set of functions &, (a € C) forms
an Abelian group with the Dirichlet series multiplication followed by a

number of applications.

2 Generalized zeta function group

We now recall the definition of the Dirichlet product (or convolution) of
two arithmetic functions f and g (cf [1], [2]).

Definition 2.1 Given two arithmetic functions f and g, the Dirichlet

(convolution) product f * g is again an arithmetic function which is
defined by

(fra)m)i=>"fldg (%) =7 (5) et @)
din dln

where the summations are taken over all positive divisors d of n.
Definition 2.2 Denote

M :={p,:z€C},

where C denotes the set of complex numbers. We call M s called the set
of generalized Mobius functions of complex order. The set, denoted by
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N, of the corresponding nonzero generalized zeta functions of complex
order is defined by

N :={¢, : 2z € C},
where &, are presented in (1.2).

From [2, 5], (M, %) forms an Abelian group with identity element s
under the operation * : M x M +— M,

Mo * 3 = Ha+3,
where «, 5 € C.

Lemma 2.3 For any given «, 3 € C, we define - : N X N — N by

ga'gb’:éy
for some v € C if

1 1 1

_*_:_7

o &8 &

where x 1is the reqular Dirichlet product of Dirichlet series (cf., for ex-
ample, [8]). Thus, we have

504 : 55 = ga—l-ﬁ-

Proof. By writing

eals) = S22 1505 = S0 22

n>1 ne n>1 ne
we obtain
V(&) = D | Y malds (5) | /m
n>1l \ dln
= > (pta*pg) /n°

D EE 1 Gs(s).

n>1
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We now ready to show (IV,-) is an Abelian group.

Theorem 2.4 Let - be the operation define in Lemma 2.3. Then (N,-)
is an Abelian group with identity element & = 1.

Proof. From Lemma 2.3, we see that NV is closed respect to the operation
.. Moreover, for any « and (3, € C, we have

504 : gﬁ = €a+ﬂ = fﬁ : 504-
And for any «, 3, and v, € C,

(60& . SB) : 57 = fa—i—ﬁ : fv

= U Yt (5) | 10

n>1 dln
Ha+p+
- 1/2 % = Sat4(5)-
n>1

Similarly, &, - (&5 - &) = Easpty- Thus,

(Soc : Sﬂ) : g’y = ga : (gﬂ : g’y)
It is also easy to check &, -1 =1-&, =&, and

fa'f—azg—a'gazl-

Therefore, the theorem is proved.

From Theorem 2.4 and Equation (1.2) we have

Corollary 2.5 For all o € Z

where (§(s))* = &§(s)(£(s))*7"

Theorem 2.6 Group (M,x*) and (N, -) are isomorphic.
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Proof. Mapping ¢ : M — N is defined by

) = &0 =1/ 32 22,

n>1

where a € C. It is easy to verify that the mapping is one-to-one and
onto [[a subspace of M in which }_ ., p1a(n)/n® is not divergent]]. In
addition, for any «, 3 € C,

Qb(,ua * :uﬁ) = ¢(Ma+5> = Catp
= &a &= P(ta) - P(1s)-

This completes the proof.

3 Some results from generalized zeta func-
tion group

A series ) ., a,n"° is called an arithmetic Dirichlet series if all of its
coefficients a,, = a(n) are arithmetic functions.

Theorem 3.1 (Generalized zeta inversion formulae) For all o € C and
Dirichlet series f and g,

f=6geg==¢,T (3.1)

Moreover, if both f =% -, fan™ and g =}, -, gan~° are arithmetic
Dirichlet series, then for any n € N

fm) =Y ko (5) 9ld) & gn) =D p-a (5) F@. (3:2)
dln dln

Proposition 3.2 For alln € N and o € C,

> ta1(d) = pa(n). (33)

din
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Proof. From Corollary 2.5

fa(n) 1 pi-1(
n’ B Sa(s) ga 1 Z

n>1 n>1
_ Ha— 1 H— 1
= Zuafl(d)ufl (g) /n’,
n>1 dn

which leads (3.3) by applying the Dirichlet series multiplication and
noting that y_; = 1.

Proposition 3.3 Let f = 2@1 con” %, and let all ¢, are completely
multiplicative functions. For any fized positive integer «,

fa—l HOé(CL>Cn — n)cn ) (34)
n-= n-*
n>1 n>1
Proof. This follows easily from Proposition 3.2 and mathematical in-
duction on «. In fact, first we have

—~

f Man

Cn\_/

o 3 () x )

n>1 n>1

3

Secondly, using mathematical induction on o we obtain (3.4).

n
It is known (cf., for examples, [4] and [6]) that for any fixed integer
a>1
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£ (s) = (Zu(n)n_s> = raln)n™, (3.5)

n>1

where

ning-Na=n

is the number of ways that n can be written as a product of « fixed fac-
tors, so that r,(n) is clearly a multiplicative function of n. In particular,
ro(n) denotes the number of positive divisors of n.

Theorem 3.4 (Characteristic of generalized Mdbius functions) For any

fized integer a > 1, the inverse of po in the group (M,*) is rq; or
equivalently, ro = i_q, t.e., for all integers n > 1

(ra * p1a)(n) = Z ra(d)pa(n/d) = dn,1, (3.6)
din
where 6,1 =1 if n =1 and 0 otherwise.

Proof. Multiplying £{(s) shown as in (3.5) with

1L 1 e
Eals)  &8(s) 2

n>1

yields

n>1

which leads 7,(1)uo(1) =1 and

(ra * pia)(n) = Z ro(d)pta(n/d) =0

dln

for n > 2, completing the proof.

Denote
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Then we obtain

Ful($)i-a(s) = DY raldmea (5) /0" = £(s) and

n>1 dn

Fo(s)-a(s) = (&)*(&) "= f? = &o(s) = 1,

i.e., identities (3.6) and
n
Zroz(d)ﬂl—oa (E) =1
dn
In particular, for ro =) dn 1, the number of positive divisors of n, from

f—2(n) = ry(n) we obtain

Fy(s)6a(s) =1 and  Fy(s)é-als) = &o(s) = L,

ie.,
Sorp(5) =1 and Y nafdye (5) = o
djn din
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