
A Cardinality Solver: More Expressive
Constraints for Free

(Poster Presentation)

Mark H. Liffiton and Jordyn C. Maglalang

Illinois Wesleyan University, Bloomington IL 61701, USA
{mliffito,jmaglala}@iwu.edu

http://www.iwu.edu/~mliffito/

Despite the semantic simplicity of cardinality constraints, the CNF encodings
typically used to solve them invariably turn one constraint into a large number
of CNF clauses and/or auxiliary variables. This incurs a significant cost, both
in space complexity and in runtime, that could be avoided by reasoning about
cardinality constraints directly within a solver. Adding a single, native cardi-
nality constraint instead of numerous clauses and/or auxiliary variables avoids
any space overhead and simplifies the solver’s procedures for reasoning about
that constraint. Inspired by the simple observation that clauses are cardinality
constraints themselves, and thus cardinality constraints generalize clauses, this
work seeks to answer the question: How much of the research on developing
efficient CNF SAT solvers can be applied to solving cardinality constraints?

Additional motivation came from our experience with a native implementa-
tion of cardinality constraints that was included in some early versions of the
MiniSAT solver [3] as a simple, unoptimized example of the solver’s ability to
easily incorporate non-clausal Boolean constraints. That ability incurred un-
wanted overhead and was removed in later versions, and the native cardinality
constraint implementation received little attention compared to the work done
on CNF encodings. In addition to those early versions of MiniSAT, there have
been other implementations of cardinality constraints that could be considered
“native,” but we are aware of none that integrate the constraints into a SAT
solver by simply extending the existing clauses to incur little to no overhead.

For example, any Pseudo-Boolean (PB) solver or Satisfiability Modulo The-
ories (SMT) solver that handles linear integer arithmetic can solve cardinality
constraints directly, as their constraints subsume both clauses and cardinality.
Numerous PB solvers have been developed by extending a SAT solver, but lit-
tle attention was paid to their performance on CNF. We are aware of only one
experimental comparison between a PB solver and its corresponding SAT solver
on CNF instances [2], comparing PBChaff with ZChaff, and the PB version was
found to be consistently slower; the extension to more expressive constraints
came at a noticeable cost. On the contrary, by restricting the solver to cardinal-
ity constraints and not general PB constraints, the implementation in this work
retains those properties and efficiencies.

Asín, et al. [1] evaluated an “SMT-based approach” to cardinality constraints
that solved them without encoding them to CNF. The “SMT” implementation
was created by “coupling” two solving engines, which does not permit the tight

http://www.iwu.edu/~mliffito/


integration of cardinality into the SAT solver done in this work, and it did not
perform well compared to CNF encodings. Marques-Silva and Lynce [4] explored
modifications to a SAT solver that improved its efficiency when using a particular
CNF encoding, but it still faced the inherent space complexity of such encodings
and was limited to AtMost constraints with a bound of 1.

The aim of this work is to generalize a state-of-the-art SAT solver at negli-
gible cost, producing a “cardinality solver” we call MiniCARD, and to exhibit
the performance of MiniCARD compared to some of the best-performing CNF
encodings of cardinality constraints. MiniCARD outperforms CNF encodings
of cardinality constraints on all pure-cardinality instances tested, and instances
with a mix of clauses and cardinality constraints exhibit mixed results indicating
some effect beyond the performance of the constraints themselves. The modifi-
cations to the solver are minimal, and it retains its performance on pure CNF
instances. Given the feasibility of achieving increased expressive power over CNF
with minor, performance-neutral changes to a state-of-the-art CNF solver, it is
well worth pursuing further research on cardinality solvers.

Several direction of future research are immediately suggested by this work.
The first is to more completely evaluate the performance of MiniCARD relative
to other means of solving cardinality constraints, especially SAT solvers with
preprocessing. Investigations of specific instances are suggested as well, such as
determining how different cardinality implementations affect applications like
CAMUS and MSU4. And finally, cardinality constraints may be a better target
than CNF for many types of problems and constraints for which CNF encodings
have been developed, such as PB constraints. The greater expressive power of
cardinality solvers with equivalent performance on clauses could enable encod-
ings that are both simpler and more efficient than pure CNF encodings.

Acknowledgments

Thanks to Albert Oliveras for providing the MSU4 benchmarks and to Niklas
Sörensson for helpful discussions and advice regarding MiniSAT.

References

1. Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality net-
works: a theoretical and empirical study. Constraints 16, 195–221 (2011)

2. Dixon, H.E.: Automating Psuedo-Boolean Inference within a DPLL Framework.
Ph.D. thesis, University of Oregon (2004)

3. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proceedings of the 6th Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT-2003).
LNCS, vol. 2919, pp. 502–518 (2003)

4. Marques-Silva, J., Lynce, I.: Towards robust CNF encodings of cardinality con-
straints. In: Principles and Practice of Constraint Programming (CP 2007). LNCS,
vol. 4741, pp. 483–497 (2007)


