next up previous
Next: Sets and functions Up: Some Basic Logic Previous: Quantifiers

Knots of Nots

Some equivalents using negations:

  1. $\displaystyle{\lnot(p \wedge q) \equiv (\lnot p)\vee \lnot q}$
  2. $\displaystyle{\lnot(p \vee q) \equiv \lnot p\wedge \lnot q}$
  3. $\displaystyle{\lnot(p \rightarrow q) \equiv p\wedge \lnot q}$
  4. $\displaystyle{\lnot \forall_x \phi(x)\equiv \exists_x \lnot\phi(x)}$
  5. $\displaystyle{\lnot \exists_x\phi(x) \equiv \forall_x\lnot \phi(x)}$

Proposition 7   The equivalences 1-3 above are valid: both sides have exactly the same truth values.(3 Points)

(3 Points )

Problem 8   The definition of $\displaystyle{\lim_{x\to a}f(x)=L}$ is
For any $\epsilon > 0$ there is a $\delta >0 $ such that for any $x$, if $0<\vert x-a\vert<\delta$, then $\vert f(x)-L\vert<\epsilon$.
  1. Write this formally using $\phi(x,\delta)$ for $0<\vert x-a\vert<\delta$ and $\psi(x,\epsilon)$ for $\vert f(x)-L\vert<\epsilon$.
  2. Use the rules for negation above to write the formal expression for ``It is not the case that $\displaystyle{\lim_{x\to a}f(x)=L}$'' with the negations as far in as possible.
  3. State (in English) what it means to say that a function $f$ does not have a limit at $a$, again moving the negations in as far as possible.

(6 Points )

Total for section: 37.



Larry Stout 2001-08-17
best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video best video