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Just Torquing Around 
Purpose: 
In this lab, you will explore how “torque,” which is the impetus for angular acceleration 
differs from “force,” which is the impetus for linear acceleration. Additionally, you will 
explore similarities between the angular kinematic equations and what you have 
previously seen for the case of linear motion. 

Background: 
Consider the apparatus shown in Figure 1, showing a turntable that is initially at rest. 
When released, the falling mass, , shown at the bottom will be acted upon by both the 
gravitational force (downward) and the tension in the string. A pulley of negligible mass 
is used to redirect the string in such a way that it causes a torque. At the turntable, the 
force due to string tension acts at some distance from the axis of rotation, equal to the 
spindle radius . 

When examining the real apparatus in the lab, notice that the force due to string tension 
acts perpendicular to line extending from the point of contact with the spindle to the axis 
of rotation. Given that, the torque exerted by the force of tension is given by Equation 1. 

       (1) 
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Because the mass of the pulley is much less than the mass  of the “turntable,” it 
follows that the tension is approximately equal on either side of the pulley. The tension in 
the string can be found by applying Newton’s second law to the hanging mass: 

     (2) 

Plugging this result into Equation 1 yields: 

    (3) 

The taut string ensures that everything moves rigidly together, meaning that the linear 
acceleration of the falling mass in Equation 2, a, is the same as the tangential acceleration 
of the spindle, at the point where the string is connected.  

Separately, note that this tangential acceleration is related to the angular acceleration of 
the turntable by Equation 4: 

            (4)

Plugging Equation 4 into Equation 3 yields: 

            (5) 

From Equation 5, you should now solve for the angular acceleration of the disk in terms 
of readily measured quantities, yielding: 

          (6) 

If the apparatus used is such that  (and we claim that it is), then, Equation 6 
may be further simplified. In this limit, Equation 6 becomes: 

        (7) 

As an aside, note that Equation 7 predicts that the angular acceleration of the disk is 
constant. As a result, this experiment is the rotational analog of many constant (linear) 
acceleration problems that you’ve considered earlier in this course. You may wish to refer 
back to your earlier work.  

We reiterate that it is the falling mass, , that causes the motion, while  is the radius of 
the spindle, which the string is initially wrapped around. The factor I is referred to either 
as “rotational inertia” or (less transparently) as the “moment of inertia” of everything on 

the turntable system that spins around: in this case, that is approximately , where 

R is the radius of the turntable (not the spindle). 
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Procedure: 

In this experiment, you will calculate, from measured data, the angular acceleration, α, of 
the turntable (a kinematic quantity) and compare this measured value with a prediction 
calculated from Equation 7 (i.e., based upon static quantities). 

We asserted that our system undergoes a constant acceleration over the duration of the 
experiment. With this assumption, the angular acceleration is given by: 

     (8) 

Of course, there are a couple of caveats: first, our assertion that the system undergoes a 
constant acceleration will fail once the falling weight hits the floor, so you’ll want to 
apply this simple model only to data taken before that moment. Also, our photogates 
aren’t set up to report the angular velocity, though you can calculate the angular velocity 
from the reported linear velocity as long as you’ve entered the correct flag width into 
the photogate software, DataStudio, and you make use of the distance from the axis of 
rotation all the way out to the point where the flag intercepts the beam of infrared light 
utilized by the photogate. This distance is labelled as  in Figure 1 (which you should 
look back at now). The linear velocities reported by DataStudio can be converted into 
angular velocities using the “calculator function” according to: 

         (9) 

To obtain your experimental value for α, you can graph the angular velocity vs. time and 
use a linear fitting algorithm, but you must thorough explain your analysis in your report, 
with appropriate visuals. 

Quick Summary: To experimentally measure the angular velocity, attach a flag of width 
w, as seen in Figure 1. Using a PASCO photogate sensor and DataStudio software, you 
can then measure the linear velocity of the flag as it passes through the photo gate. — Do 
not forget to enter the correct flag width during the photogate configuration step. — In 
addition, you can use the DataStudio calculator to convert the measured linear velocities 
into their respective angular velocities. That leaves you in good shape for determining 
the angular acceleration, , by fitting your data. 

You should repeat the experiment for a well-chosen range of masses and then use 
linear fits to compare the experimental slopes you observe (for each of the masses) 
with the prediction given by Equation 7. 

Provide an “intelligently designed” data table in your lab notebook (sloppiness and lack 
of clarity and/or organization will get you penalized). You might wish to consider your 
first attempts to be rough drafts. 
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Picture 1: Attaching the photogate 

Because it is imperative that the photogate position remains fixed with respect to the axis 
of rotation, it should be attached to the apparatus as shown above, with the aid of a 

 bolt. At the left above, you can see that such a bolt can be directly threaded into 
the bottom of a photogate. In the example shown in the middle of the picture above, you 
are provided with a bottom view of the attachment. At right above, you see the photogate 
in an orientation appropriate to use in the experiment. — A fully assembled apparatus, 
with the flag attachment, is also shown below, in Picture 2 (the bottom photograph): 

Picture 2: Assembled system (including a useful set tools for this activity) 
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Act II: Conservation of Energy (you already have the data!) 

Again, consider your experimental arrangement. We can easily apply the principal of 
conservation of energy, as the falling mass, , descends a distance : 

 

Discuss how the equation above makes sense and, from it, show that the equation 
below must follow. [Hint: how are  and  related?] 

 

That is,  

 

Why would we want to express the relationship in this fashion? 
What falling masses can be used in order for the preceding approximation to be valid? 
[You do NOT have to use the approximation!] 

Discuss the linearization method as it pertains to this analysis. That is, what’s the 
advantage of using a plot of  vs. h (which you should now create!!)? 

Carefully describe how you can relate the circumference C of your spindle to successive 
changes in heights, each time the turntable makes another revolution. Then, connect these 
height changes to their respective angular velocities (already obtained prior to Act II). 
 
Does the slope of your plot for Act II agree with what you would predict, based upon 
values obtained from static measurements for  ? — If there is reasonable 
agreement, what does this prove?  
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Questions: 

1. Are your experimental results consistent with your expectations? Discuss. 

2. The mass of the three-tier spindle is approximately 100 grams, however we neglected 
its moment of inertia in the calculations. Show using calculations, that this 
approximation is justified. 

3. In going from Equation 6 to 7, we claimed that the approximation mr2 << I is 
valid. Is this approximation justified for the apparatus that you used (i.e., calculate 
the quantities mr2 and I, and compare)? 



Initiative: 
Possible ideas: 

1. List and describe, in detail, all of the torques acting on the disk. Did we neglect any 
that should have been considered? Can you explore these? 

2. Determine if we are justified in using average angular velocities, when - strictly 
speaking - our calculation of a calls for instantaneous values. That is, is there 
anything that could be done to improve the values of ω and ω 0? (Hint: see the 
“initiative page” from the lab on the Work-Energy Theorem). 

3. Discuss whether mechanical energy is conserved in this experiment. If not, what 
fraction is lost? Where is the energy lost? 

4. Try activities suggested in this video: iOLab Activity on Angular Acceleration 
Moment of Inertia 

5. Try activities on Pivot Interactives, regarding a Disk Accelerated by Hanging Weight. 

https://www.youtube.com/watch?v=iwLt92Xm3VA
https://www.youtube.com/watch?v=iwLt92Xm3VA
https://app.pivotinteractives.com/activities/58e7bf74d5a7cb00118c97d9/preview


Conclusions: 


