
Precision – Correcting for Random Error 
 
The following material should be read thoroughly before your 1st Lab. 
 

The Statistical Handling of Data 
 

Our experimental inquiries into the workings of physical reality are imperfect, owing to 
the fact that we cannot arrive at a completely accurate, or “correct,” value, for an 
experimental quantity. There are two reasons for this.  First, our instruments are not 
capable of giving us exact measurements.  For instance, a meter stick can only measure 
accurately to the nearest 0.5 mm; a vernier will serve us better but we are still limited to 
about 0.1 mm.  As long as we can always come up with a more accurate method for 
measuring a given quantity, there exists no “correct” value.  The second source of 
uncertainty in our measurements is the effect of human bias. If five people were asked to 
measure a given quantity, we might have five different values for that quantity.  Which 
measured value should we consider to be the correct value? 
 
 To handle these uncertainties we introduce three statistical variables to describe 
experimental data: mean, standard deviation of the sample, and standard deviation of the 
mean. 
 
Mean, µ:  
 

The mean is the average value; that is, the sum of the measured values divided by 
the number in the sample.  It describes the single value around which the 
measured values are centered. 

 
Standard Deviation of the Sample, σ:   
 

The standard deviation of a sample describes how much variation there is among 
the sample.  The standard deviation of the sample, σ, is found using Equation 1. 
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measurements taken.  The expression inside the radical is called the “variance.” 
 
Standard Deviation of the Mean, 
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Dividing the standard deviation of the sample by the square root of the number of 
measurements in the sample yeilds the standard deviation of the mean, 
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We have just defined three useful statistical variables; let us now give them some 
intuitive significance. Consider a set of measurements made to determine the length of a 
rod. If one performs a large number of measurements on the rod and plots the fraction of 
measurements that resulted in a particular measurement verses the measured lengths, a 
normal, or “bell,” curve is obtained.  Strictly speaking, the normal curve is reached only 
after an infinite number of measurements; however, it is often a good approximation for 
smaller samples.  The normal distribution can be seen in Figure 1. 
 

 
Figure 1: Showing the normal distribution.  The figure on the right depicts a distribution having a larger 

standard deviation, while the figure on the right has a smaller standard deviation. 
 
The measurements will cluster around the mean, m.  Often the mean will be one of the 
most common measurements.  If your instructor was to ask you what the “true” length of 
the rod was, the mean would be your best estimate. 
 
The standard deviation of the sample, σ, is a measure of how “spread out” one’s 
measurements are.  A larger standard deviation implies that your measurements are more 
spread out and not as consistent with each other.  The smaller the standard deviation of 
the sample, the more “reliable” your sample of measurements is.  Often, 68% of your 
measured values will fall within the region ranging from µ − σ   to µ + σ. 
 
If the mean is your best estimate of the “true” measured value, you might wonder how 
well you know this.  From the previous paragraph, the standard deviation of the sample 
conveys this sort of information.  However, it does not tell you all that there is to know.   
For instance, suppose that two of your classmates measured the length of a rod.  One 
student takes two measurements while the other takes ten.  Which student would you 
think has a more “accurate” value?  Even if the two students arrived at the same value for 
σ, one would likely place more confidence in the mean of the student who took more 
measurements; because he obtained more readings - their mean value for the time is less 
uncertain.   
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This is where the standard deviation of the mean is useful.  If repeated measurements 
continue to yield the same distribution of lengths, with the same value for µ and σ, your 
knowledge of µ improves.  The standard deviation of the mean attributes more certainty 
to an mean value which is obtained from a larger number of measurements 
 
An example showing how one would calculate these quantities is given below. 

 
Example 1: A set of measurements on the length of a rod are as follows: 

 
17.304, 17.483, 17.266, 17.325, 17.379.  

  
The tabulation and treatment of the data are given below.  
  

 Reading, cm Deviations, cm Deviations Squared, 
cm2 

1 
2 
3 
4 
5 

17.304 
17.483 
17.266 
17.325 
17.379 

    -0.047 
     0.132 
    -0.085 
    -0.028 
     0.028 

  2.209 x 10-3 

 17.424 x 10-3 

  7.225 x 10-3 

  0.676 x 10-3 

  0.784 x 10-3 
Sum 86.757 Sum  28.318 x 10-3 
Mean 17.3514 Variance   7.080 x 10-3 

 s  = 8.414 x 10-2 
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5
 = 3.763 x 10-2 

 
 

Error and uncertainty  
  
When reporting data, the mean is given along with the standard deviation of the mean (in 
the same units). For example, if we were to report on the data used in Example 1, we 
would report the length of the rod as: 
  
     17.351 ± 0.038 cm  
  
This means that the length of the rod is taken to be 17.351 cm, and it is understood that 
this value could be in error by 0.038 cm.   
 
If the accepted, or theoretical, value for some physical quantity is within the error range µ  
± σm, the experimental result is in agreement with theory.  If the theoretically predicted 
value lies outside a one sigma error range, then experiment does not agree with theory 
within that error range. 
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If we want to contrast two experimental values, the two values agree the quantities 
µ  ± σm overlap. For example, if one experimenter measures the acceleration of gravity at 
the earth's surface to be 9.81 ± 0.02 m/s2, and another arrives at a value of 
9.77 ± 0.03 m/s2, their results agree because their measurements overlap.  
  
Sometimes you might want a unitless measure of how well-known your result is.  In this 
case, you would use relative uncertainty.  The relative uncertainty in a reported value is 
defined as the percentage: 
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In example 1, the relative error in the length of the rod is:  
 

relative error = (0.0376/17.351) x 100% = 0.22% 
 
This gives an alternative way of reporting an experimental value:   
 

length of rod = 17.351 ± 0.0376 cm = 17.351 cm ± 0.22% 
 
When comparing results using this criterion, the experimental result agrees with another 
if the percent difference is less than the total relative uncertainty. 
 
 

Propagation of Error 
 
Until now, our discussion has centered around groups of measurements. In the event that 
a single measurement is taken, the error is considered to be the error due to the limitation 
of the measuring device; usually one-half of the smallest increment in the instrument .   
 
What if we wanted to combine the results of measurements on different quantities.  
Suppose that you have three measured quantities, x, y and z, with uncertainties σx, σy, σz.  
The rules for determining the error (σm) and the relative error of the result, w, are given 
below: 
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Two examples are given below. 
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Example 2: Combining Measurements I 
 
Find the combined length of two rods, one of length 17.351 cm ± 0.019 cm and the other 
of length 5.027 cm ± 0.007 cm.  
  

1. Add 17.351 cm and 5.027 cm to find the combined length, 22.378 cm.  
 

2. Square 0.019 cm and 0.007 cm to obtain the variances of the lengths,  
3.61 cm2 x10-4 and 0.49 cm2 x10-4, respectively.  
 

3. Add the variances to find the sum of the variances, 4.10 cm2 x 10-4.  
 

4. Take the square root of the sum of the variances to find the error in the result, 
2.02 cm x 10-2. 

  
5. This result is reported as 22.378 cm ± 0.020 cm., or 22.378 cm ± 0.089%  

 
Example 3: Combining Measurements II 

 
Determine the density of an object found to have a mass of 1.305 kg ± 0.002 kg and a 
volume of 9.57 m3x 10-4 ± 0.16 m3 x 10-4.  
 

1. Divide 1.305 kg by 9.57 m3x 10-4 to find the density, 1.181 kg m-3 x 103. 
 

2. Divide 0.002 kg by 1.305 kg to find the relative error of mass, 1.53 x 10-3.  
 

3. Square 1.53 x 10-3 to find the relative variance of mass, 2.35 x 10-6. 
 

4. Repeat steps 2 and 3 to find the relative error of volume, 1.67 x 10-2, and 
relative variance of volume, 2.80 x 10-4. 
 

5. Add 2.35 x 10-6 and 2.80 x 10-4 to find the sum of the relative variances,  
2.82 x 10-4. 
 

6. Take the square root of sum of the relative variances, 2.82 x 10-4, to find the 
relative error of the result, 1.68 x 10-2. 
 

7. Multiply 1.181 x 103 and 1.68 x 10-2 to find the error of the result,  
19.8 kg m-3.  
 

8. Report the result as 1.181 kg/m-3 x 103 ± 0.0198 kg m-3 x 103, or  
1.181 kg m-3 x 103 ± 1.68%.  


