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A Brownian particle in a parabolic potential well should be considered a canonical example for teaching 
statistical physics, directly following the case of a flat-bottomed potential well (free diffusion). A 
microparticle in an optical trap behaves much like a classical mass on a spring, characterized by a spring 
stiffness, k, and so is described in terms of a parabolic potential. 

In the case of a 2002 experiment by Genmiao M. Wang et al., the trap stiffness k ~ 0.1pN/𝜇m, 
meaning that the optical trap was quite weak so that the position of the microparticle within the trap was not 
very strictly constrained. Still, once the trap stiffness is known, one can use Hooke’s law to calculate, from 
any observed position of the microparticle, the optical restoring force associated with the trap, Fopt. 

In this experiment the trapped particle resided within a closed sample cell filled with water, which 
acted as a large thermal reservoir at room temperature. The microparticle was small enough that thermal 
agitation of its position was easily detectable using standard microscopy methods for particle tracking. Over a 
span of two seconds, an ensemble of the particle’s thermally agitated positions was recorded and then 
averaged to yield the equilibrium position, x0, of this Brownian particle within the optical potential well.  

In the case of a flat-bottomed potential well, Brownian motion is ballistic on ultra-short time scales, 
but these time scales were simply too short to be observable in the work of Wang et al., crossing over after a 
time determined by the rate of energy dissipation, t f = 1 2γ( ) = m 6πηa , to the familiar linear growth of the 

mean squared displacement: x2 = 2Dt , where D is the diffusivity of the bead, D = kBT 6πηa , and the 
numerical prefactor is set by the dimensionality.  

For a parabolic potential there is no range of travel over which the particle will not feel a restoring 
force. Nevertheless, because of observed phenomenology (specifically the power spectrum describing 
displacements from the equilibrium position), practitioners colloquially say that it is as if the particle takes 
time to “feel the walls,” and that over short (but observable) time scales, there seems to be free diffusion 
within the trap. Of course such colloquial phrasing leaves something out, but it is appropriate to identify a 
crossover from this “short time” limit, set by the rate of energy dissipation as a fraction of the natural 
frequency, ω 0 = k m , and characterized by τ 0 = 6πηa k . A formal derivation of the power spectrum 
including, at all times, the Hooke’s law restoring force that is provided by the laser, yields a standard 
Lorentzian with a corner frequency set by 1 τ 0  and, equivalently, an autocorrelation function given by: 

x t( )x t +τ( ) = kBT
6πηaτ 0

e
− τ τ 0 . 

In the next step of the experiment of Wang et al. the piezoelectric stage upon which the sample cell is 
mounted begins moving at constant velocity vopt = -1.25 𝜇m/s, so it would take approximately 5 seconds to 
traverse the 6.3-micron diameter of the trapped microparticle, were it to remain at a fixed position. In fact, the 
motion of the closed sample cell imposes a hydrodynamic drag. Because the ballistic limit is restricted to what 
Einstein described as experimentally inaccessible time scales, the time-average particle position will be 
located where the drag force is balanced by Fopt. That is, the experiment done by Wang could only observe the 
particle once it had already reached terminal velocity, as hydrodynamics sweeps it to a new equilibrium 
position in the “downstream” direction relative to x0 (i.e., this is the most probable direction of motion). 
Nevertheless, over short times, of course, Brownian dynamics ensures that the particle trajectories will contain 
some upstream excursions, which constitute a *calculable* fraction in any histogram of particle trajectory 
steps. Again, the characteristic time associated with the trap is τ 0 = 6πηa k ≈ 0.5 sec  for the parameters 
given. The aim of the experiment is to test whether or not the theoretical framework for calculating this 
fraction (published as a “Fluctuation Theorem” by Debra Searles and Denis Evans) is consistent with 
experimental observations. 



What Searles and Evans did was to construct a measure of any changes in entropy, which in this case 
can be associated with the trapped microparticle, which acts as a small sub-system connected to the larger 
thermal reservoir of the surrounding fluid. Because entropy is usually denoted by the letter S, Searles and 
Evans use the capital greek letter sigma to denote a related quantity, which they argue constitutes a 
(dimensionless) measure of entropy production: 

Σ! =
 𝑭𝒐𝒑𝒕 𝒔 ∙ 𝒗𝒐𝒑𝒕𝑑𝑡
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In	this	ratio,	the	net	work	done	against	the	optical	forces	is	compared	to	kBT,	which	roughly	describes	
the	scale	of	the	available	thermal	fluctuations.	This	is	akin	to	the	classic	formula	from	thermodynamics	
for	changes	in	entropy:	

ΔS = Q
T .
	

Because	the	reservoir	is	taken	to	maintain	a	fixed	temperature,	the	internal	energy	is	taken	to	be	
unchanged	and	so	Q = ΔW .	Again,	particle	trajectories	in	the	downstream	direction	are	considered	to	
be	“moves	toward	the	more	probable”	and	so	are	associated	with	an	increase	in	entropy,	while	
trajectories	in	the	opposite	direction	are	said	to	be	“entropy	consuming.”		
	

	
	

In	the	experiment	of	Wang	et	al.,	the	onset	of	the	motion	of	the	stage	is	defined	to	be	t	=	0,	and	in	
their	Figure	1	(above),	histograms	of	the	time-averaged	entropy	production,	Σ!/t,	corresponding	to	
t	=	10-2	seconds	( ≪ τ 0 )	and,	separately,	t	=	2	seconds	( ∼ 4τ 0 )	are	plotted	for	540	particle	trajectories.	At 
t = 10-2 seconds, the trajectories are distributed evenly among entropy-consuming trajectories (Σ! < 0) and 
entropy-producing trajectories (Σ! > 0). At t = 2 seconds, the number of trajectories shifted to the positive 
side, with entropy-producing trajectories outnumbering entropy-consuming trajectories. In other words, time-
reversal symmetry is, quite naturally, broken over long time scales. This is said to reflect the emergence of the 
so-called “Arrow of Time” or, equivalently, the Second Law of Thermodynamics, which is – and always was 
– a statement that systems tend to move toward the more probable in the limit of sufficiently large samples. 	

The Searles-Evans framework makes a specific prediction about how the Second Law emerges, which 
is reflected in Figure 2 of	Wang	et	al.	(below), for which the number of entropy-consuming and entropy-
producing trajectories is counted from t = 0 to 3 seconds, and the ratio of the two is plotted against time, as the 
discrete black data points shown in the plot.  



 
In the limit of short times, the ratio approaches unity (reflecting time-reversal symmetry), but goes to zero 
over 2.5 seconds ( ∼ 5τ 0 ) with the form of the evolution predicted by the Fluctuation Theorem (FT). 

In particular, the Searles-Evans FT in “integrated form” predicts the relative probabilities of entropy-
consuming and entropy-producing trajectories should be given by: 

Pr Σt < 0( )
Pr Σt > 0( ) = exp −Σt( )

Σt>0
 

where the right-hand-side brackets are meant to indicate an average over all entropy-producing trajectories. 
Thus, the right-hand side of the equality is also determined experimentally, and is shown as the red line in the 
figure. To within experimental limits, the Searles-Evans equality is consistent with the dependences indicated 
by the observations. A computer simulation also reinforces the notion that the model is descriptive of this sort 
of experiment. Both the simulation and experimental data show the predicted exponential decrease in the 
number of entropy-consuming trajectories with time. So, our next step should be a discussion of the physical 
reasons for this equality. 

 Note that this is not (quite) a ratio of Boltzmann factors. In fact, that’s the whole point!  

Boltzmann’s tormenter, Loschmidt, debated him, publically, over the issue of how microscopic equations of 
motion that exhibit time-reversal symmetry can lead to irreversible macroscopic behavior. In 2002, Evans and 
Searles wrote, “Unlike the Boltzmann equation, the FT is completely consistent with Loschmidt’s observation 
that for time reversible dynamics, every dynamical phase space trajectory and its conjugate time reversed 
‘anti-trajectory’, are both solutions of the underlying equations of motion.” So, once again, the key lies in 
illuminating how time-reversal symmetry is destroyed.  

Here’s my take on it: dissipation of energy is always at the heart of the matter. As energy spreads out among 
many reservoir degrees of freedom, the chances of it taking a time-reversed path become more and more 
negligible. Considering the available “trajectories” for energy dispersal, it is as if I were in a maze of 
enormous complexity: over short times I might be able to retrace a few steps, but little chance of that persists 
over longer times, and so time-reversed paths become an inaccessibly small fraction.  

If we construct an ultra-fast position detector, we can clearly go beyond the work of Wang, et al. To date, 
only Mark Raizen’s group has been able to experimentally access the “ballistic” diffusion regime, and so this 
presents relatively unexplored terrain. In any case, I wish to publish, in the American Journal of Physics, an 
article that will be accessible to undergraduate physics majors, ideally with a more comprehensive (in once 
sense or another) set of data taken by IWU students. For the case at hand, it will take more work to establish a 
simple, intuitive relation between dissipation and the onset of irreversibility. – So it may also be useful to also 
discuss other kinds of situations. For the (quite distinct) case of simple wave propagation, the rate at which the 



phase advances is determined by the energy, and so it is not surprising to find that phase memory is destroyed 
by inelastic scattering: that is (as with the case at hand), time-reversal symmetry is broken by energy 
dissipation. In another (quite distinct) context, there is considerable current interest in considering whether or 
not there can be a physical model of quantum wavefunction collapse. When we speak of, say, a single photon 
(or some other microscopic quantum-mechanical object), any detection event will, in the end, involve 
amplification from the microscopic to the macroscopic (classical) world of meters and observers. Such 
amplification is always irreversible, as with the avalanche that occurs in any Geiger-mode detector. Cal Tech 
physicist Sean Carroll, author of The Big Picture, has collaborated with the Minute Physics YouTube channel 
to produce a series of five very brief videos that serve as general-audience “micro-tutorials” on topics of 
relevance to our discussions. The first of these can be found at this link. There may be a number of additional 
cases where the relation between irreversibility and dissipation of energy is perhaps a bit more transparent. 
Your input is requested. 

Evan and Searles claim that, more generally, “We now know that the Second Law of Thermodynamics can be 
derived assuming ergodicity at equilibrium, and causality. We take the assumption of causality to be 
axiomatic. It is causality which ultimately is responsible for breaking time reversal symmetry and which leads 
to the possibility of irreversible macroscopic behavior. …The Fluctuation Theorem does much more than 
merely prove that in large systems observed for long periods of time, the Second Law is overwhelmingly 
likely to be valid. The Fluctuation Theorem quantifies the probability of observing Second Law violations in 
small systems observed for a short time.” 

A more generalized discussion of the broader class of Fluctuation Theorems developed since the early 1990’s 
can be found in a special “Perspective” included in this month’s issue of Nature Nanotechnology. A related 
blurb about the author of that Perspective, Jeremy England, tries to suggest that this issue could, essentially, 
be the “Secret of Life Itself." Though, to me, Jeremy England’s initial efforts seem to muddle cause and 
effect, I really do think that F.T. theorems have enormous potential for unlocking essential understanding of 
molecular biology, as has already been partly demonstrated by the work of Carlos Bustamante’s group at 
Berkeley, which were the first to experimentally confirm that key, new fluctuation theorems allow for the 
recovery of RNA folding free energies, a key feat, given that biomolecular transitions of this sort occur under 
nonequilibrium conditions and involve significant hysteresis effects that had previously been taken to 
preclude any possibility of extracting such equilibrium information from experimental data. In fact, work now 
being done on fluctuation theorems (both theoretically and experimentally) is among the most significant in 
all of statistical physics within the past three decades. These theorems have great general importance, and 
include extension of the Second Law of Thermodynamics into the realm of biomolecules and nano-machines. 
Clearly such work opens up vast new intellectual opportunities. Yes, DNA folding and loop formation have 
been implicated as playing key roles in turning on and off gene expression, but the importance of these 
systems is central to all of the physical sciences. Polymer physics was highlighted for its theoretical 
significance when Pierre deGennes was awarded the Nobel Prize in Physics for discovering that “methods 
developed for studying order phenomena in simple systems can be generalized to more complex forms of 
matter, in particular to liquid crystals and polymers.” Our attention to, say, the packing of DNA follows in this 
tradition: it would be a huge mistake to think of such biological work only within the context of its direct 
biological applications; this is a vibrant, open field of basic physics, where there remains a great deal of work 
left to do – and is of considerable technological interest (conjuring images of futuristic information storage 
systems having a capacity rivaling that of the human brain). 
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