
LabVIEW HW #5 (a longer assignment!)

Each problem begins with a suggested descriptive name (including the .vi extension) for the
solution VI that you will write. Suggested icons for use in the VI are given at the end of some
problem statements. The palette locations of the cited icons are not give explicitly: these icons
can be found with the aid of Quick Drop.

1. The 4th Edition of the Essick text contains a special Do-It-Yourself/“USE IT!” section
ending the portion of the text that describes communication with Data Acquisition
Devices using the Measurement & Automation Explorer (MAX). Copies will be
distributed to those using earlier editions, so you should also complete these tasks.

2. Derivation of Aliasing Condition Given that we can write the aliasing condition as
f =± falias + n fs , use this to show that sin(2p f ti) = ± sin(2p falias ti), at all ti = i ∆t.

3. Observation of Voltage Resolution Find the size of the smallest observable voltage steps,
∆V, when you make a measurement using an analog input on an n-bit DAQ device, and
verify that your observation is consistent with the prediction of Equation (1) from your
LabVIEW workbook. Attach a small DC voltage (e.g., the output of a thermopile) to the
AI channel ai0 of your DAQ, and then use MAX (under the Analog Input tab, with
Mode>>On Demand) to acquire 100 (or so) digitized samples of this input voltage. After
stopping the acquisition, carefully inspect the data samples of this “constant” input signal,
which in reality will vary slightly due to electronic noise in the experimental setup [and,
possibly, with the slow time variation of the source (e.g., drift or “1/f noise”)]. You
should find that the samples you have captured are distributed in discrete voltage levels.
Determine the smallest spacing, ∆V, between two of these adjacent levels. Given the
range and resolution of your DAQ device, does your value for ∆V agree with the
prediction of Equation (1)? If your DAQ device can operate with a different input range
(or “span”), repeat this procedure to verify that ∆V decreases (or increases) as expected.

4. Pulse Train Generation Using MAX
Some of the less expensive DAQ cards do not allow “hardware-based” timing, and you
won’t want to use one of those for this problem. Examples where you are stuck with (far
less accurate and precise) “software-based” timing are the USB-6001 and myDAQ.
While the USB-6008 does have a 32-bit counter, it lacks a gate, and so that device can
only count edges, meaning that it cannot directly perform period or frequency
measurement in hardware (i.e., with high accuracy and precision).
…On the other hand, other USB devices, such as the USB-6211 and the ELVIS II do
have internal clocks, and all of the PCI devices, such as the PCI-6251 and the ELVIS I,
allow hardware timing. For this problem (an much of your lab work), you will need to

connect to a DAQ with hardware timing, and make sure that you make use of it (rather
than using imprecise software timing).
…For this exercise, you will generate a “digital pulse train,” that is, a waveform that
alternates, at a precise frequency, between the HIGH and LOW voltages that we
associate with digital “states.” Note (Well!): there is no completely universal standard as
to what those voltages are; while many ultra-fast devices use the “NIM” standard voltage
levels, the old standard has been “Two-Transistor Logic,” or TTL. – Wikipedia states:

Standard TTL circuits operate with a 5-volt power supply. A TTL input signal is
defined as "low" when between 0 V and 0.8 V with respect to the ground terminal,
and "high" when between 2 V and 5 V, and if a voltage signal ranging between
0.8 V and 2.0 V is sent into the input of a TTL gate, it is considered "uncertain."

Armed with an appropriate DAQ (capable of hardware timing), proceed as follows:
Under the Counter I/O tab, for an available counter (e.g., Channel Name>>Dev1/ctr0)
select Mode>>Pulse Train Generation. For Pulse Terminal, select the output pin for the
counter being used (e.g., the output pin for counter0 on the PCIe-6251/ELVIS I is called
CTR 0 OUT and is the PFI 12 pin). Connect the pin selected by Pulse Terminal, along
with the D GND pin, to the input of an oscilloscope (or an AI channel of your DAQ
device). Press Start and verify that a TTL-compatible digital waveform is being created
with the frequency that you have input on the front-panel Frequency control.

5. Creating a Simulated Device There will be occasions when you want to work on your

programming, when a DAQ device is not available to you. For those situations, you can
create a software replica (called a simulated device), using MAX.

a. Create a USB-6002 simulated device as follows: in MAX, right-click on Devices
and Interfaces under the My System heading and select Create New…. In the
dialog window that appears, select Simulated NI-DAQmx Device or Modular
Instrument, and press Finish. Then, in the Create Simulated NI-DAQmx Device
window, choose USB DAQ>>USB-6002, and press OK.

b. Confirm that the USB-6002 simulated device now appears in the list under
Devices and Interfaces, in the same manner that a real DAQ device would, except
that simulated devices are denoted by yellow icons.

c. Create a Test Panels window for the simulated device, then choose the Analog
Input tab and select Mode>>Finite. When you press Start, the chart will display a
simulated acquisition at the specified AI channel, of one cycle of a noisy sine
wave. If All Input is selected, then the digital lines will count in binary, under the
Digital I/O tab.

